Skip to main content
Log in

Assessment of Ti–16Nb–xZr alloys produced via PIM for implant applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Titanium and its alloys are used in production of implants such as knee and hip prostheses due to their superior properties. Ti–Nb–Zr ternary alloys are preferred over other metallic implant materials due to the presence of non-toxic elements, high corrosion resistance, good biocompatibility, and proper mechanical properties. The aim of this work is to investigate the effect of zirconium addition on α → β phase transformation, microstructure, and mechanical behavior of Ti–16Nb alloy. In doing so, Ti–16Nb–xZr (x: 0, 5, 10, 15 mass%) alloys are produced by powder injection molding, which offers advantages such as low cost, net shape, and easy production of complicated parts for implant fabrication. X-ray diffraction analysis and scanning electron microscope images showed that zirconium behaves as a β stabilizer and according to differential thermal analysis, and it decreases α to β transition temperature approximately 30 °C. It is also revealed that increasing zirconium content caused finer microstructure and hardness of the alloy was raised from 336 HV0.5 to 412 HV0.5 while elastic modulus remains approximately steady between 103 and 110 GPa. It is concluded that Ti–Nb–Zr alloys have been found to be a good alternative to known metallic implant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim DG, Woo KD, Kang DS, Lee T, Lee MH. Fabrication and biocompatibility evaluation of porous Ti–Nb-based biomaterials with space holder by rapid sintering. Mater Res Innov. 2015;19:S1-301–4. https://doi.org/10.1179/1432891715Z.0000000001491.

    Article  CAS  Google Scholar 

  2. Sridhar TM, Vinodhini SP, Kamachi Mudali U, Venkatachalapathy B, Ravichandran K. Load-bearing metallic implants: electrochemical characterisation of corrosion phenomena. Mater Technol. 2016;31:705–18. https://doi.org/10.1080/10667857.2016.1220752.

    Article  CAS  Google Scholar 

  3. Nicoara M, Raduta A, Locovei C, Buzdugan D, Stoica M. About thermostability of biocompatible Ti–Zr–Ta–Si amorphous alloys. J Therm Anal Calorim. 2017;127:107–13.

    Article  CAS  Google Scholar 

  4. Ou K, Weng C, Lin Y, Huang M. A promising of alloying modified beta-type titanium–niobium implant for biomedical applications: microstructural characteristics, in vitro biocompatibility and antibacterial performance. J Alloys Compd. 2017;697:231–8. https://doi.org/10.1016/j.jallcom.2016.12.120.

    Article  CAS  Google Scholar 

  5. Bolzoni L, Ruiz-Navas EM, Gordo E. Evaluation of the mechanical properties of powder metallurgy Ti–6Al–7Nb alloy. J Mech Behav Biomed Mater. 2017;67:110–6. https://doi.org/10.1016/j.jmbbm.2016.12.005.

    Article  CAS  PubMed  Google Scholar 

  6. Xu Y, Xiao Y, Yi D, Liu H, Wu L, Wen J. Corrosion behavior of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications in Ringer’s solution. Trans Nonferrous Met Soc China. 2015;25:2556–63. http://www.sciencedirect.com/science/article/pii/S1003632615638754.

  7. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog Mater Sci. 2009;54:397–425. http://www.sciencedirect.com/science/article/pii/S0079642508001126.

  8. Moraes PEL, Contieri RJ, Lopes ESN, Robin A, Caram R. Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys. Mater Charact. 2014;96:273–81. http://www.sciencedirect.com/science/article/pii/S1044580314002551.

  9. Yılmaz E, Gökçe A, Findik F, Özkan Gülsoy H. Characterization of biomedical Ti–16Nb–(0–4)Sn alloys produced by powder injection molding. Vacuum. 2017;142:164–74. http://linkinghub.elsevier.com/retrieve/pii/S0042207X16310612.

  10. Biesiekierski A, Lin J, Li Y, Ping D, Yamabe-Mitarai Y, Wen C. Investigations into Ti–(Nb,Ta)–Fe alloys for biomedical applications. Acta Biomater. 2016;32:336–47. http://www.sciencedirect.com/science/article/pii/S1742706115302488.

  11. Behera M, Raju S, Mythili R, Saroja S. Study of kinetics of α ⇔ β phase transformation in Ti–4.4 mass% Ta–1.9 mass% Nb alloy using differential scanning calorimetry. J Therm Anal Calorim. 2016;124:1217–28.

    Article  CAS  Google Scholar 

  12. Ibrahim MK, Hamzah E, Saud SN, Nazim EM, Iqbal N, Bahador A. Effect of Sn additions on the microstructure, mechanical properties, corrosion and bioactivity behaviour of biomedical Ti–Ta shape memory alloys. J Therm Anal Calorim. 2017; http://link.springer.com/10.1007/s10973-017-6636-2.

  13. Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S. Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys. Mater Sci Eng A. 2005;403:334–9. https://doi.org/10.1016/j.msea.2005.05.050.

    Article  CAS  Google Scholar 

  14. Zhang J, Sun F, Hao Y, Gozdecki N, Lebrun E, Vermaut P, et al. Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti–Nb–Zr alloy. Mater Sci Eng A. 2013;563:78–85. https://doi.org/10.1016/j.msea.2012.11.045.

    Article  CAS  Google Scholar 

  15. Nagaram AB, Ebel T. Development of Ti–22Nb–xZr using metal injection moulding for biomedical applications. Key Eng Mater. 2016;704:334–42. https://doi.org/10.4028/www.scientific.net/KEM.704.334.

    Article  Google Scholar 

  16. Sungtong W, Khantachawana A. Effect of Zr addition on mechanical properties of Ti–Nb–Zr alloys for biomedical applications. Adv Mater Res. 2012;463–464:841–4. http://www.scientific.net/AMR.463-464.841.

  17. Málek J, Hnilica F, Veselý J, Smola B, Kolařík K, Fojt J, et al. The effect of Zr on the microstructure and properties of Ti–35Nb–XZr alloy. Mater Sci Eng A. 2016;675:1–10. https://doi.org/10.1016/j.msea.2016.07.069.

    Article  CAS  Google Scholar 

  18. Abdel-Hady M, Fuwa H, Hinoshita K, Kimura H, Shinzato Y, Morinaga M. Phase stability change with Zr content in B-type Ti–Nb alloys. Scr Mater. 2007;57:1000–3. https://doi.org/10.1016/j.scriptamat.2007.08.003.

    Article  CAS  Google Scholar 

  19. German RM, Bose A. Injection molding of metals and ceramics. Metal Powder Industries Federation; 1997. https://books.google.com.tr/books?id=jXINAAAACAAJ.

  20. Abdullahi AA, Nahar N, Azuddin M, Choudhury IA. 1.16 net-shape microfabrication technique by Micrometal Powder Injection Molding A2—Hashmi, MSJ BT—Comprehensive Materials Finishing. Oxford: Elsevier; 2017. p. 466–503. http://www.sciencedirect.com/science/article/pii/B9780128035818091621.

  21. Aslam M, Ahmad F, Yusoff PSMBM, Altaf K, Omar MA, M.German R. Powder injection molding of biocompatible stainless steel biodevices. Powder Technol. 2016;295:84–95. http://www.sciencedirect.com/science/article/pii/S0032591016301322.

  22. German RM. Progress in titanium metal powder injection molding. Materials (Basel). 2013;6:3641–62. https://doi.org/10.3390/ma6083641.

    Article  Google Scholar 

  23. Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4:445–54. https://doi.org/10.1016/j.stam.2003.09.002.

    Article  CAS  Google Scholar 

  24. German R. Titanium powder injection moulding: a review of the current status of materials, processing, properties and applications. Powder Inject Mould Int. 2009;3:21–37.

    Google Scholar 

  25. Zhao D, Chang K, Ebel T, Nie H, Willumeit R, Pyczak F. Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial. J Alloys Compd. 2015;640:393–400. https://doi.org/10.1016/j.jallcom.2015.04.039.

    Article  CAS  Google Scholar 

  26. Bidaux JE, Closuit C, Rodriguez-Arbaizar M, Carreno-Morelli E. Metal injection moulding of Ti–Nb alloys for implant application. Eur Cells Mater. 2011;22:32.

    Google Scholar 

  27. Bidaux J-E, Closuit C, Rodriguez-Arbaizar M, Zufferey D, Carreño-Morelli E. Metal injection moulding of low modulus Ti–Nb alloys for biomedical applications. Powder Metall. 2013;56:263–6. http://www.maneyonline.com/doi/abs/10.1179/0032589913Z.000000000118.

  28. Zhao D, Chang K, Ebel T, Qian M, Willumeit R, Yan M, et al. Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material. J Mech Behav Biomed Mater. 2013;28:171–82. https://doi.org/10.1016/j.jmbbm.2013.08.013.

    Article  CAS  PubMed  Google Scholar 

  29. Huang B, Liang S, Qu X. The rheology of metal injection moulding. J Mater Process Technol. 2003;137(1–3):132–7. http://www.sciencedirect.com/science/article/pii/S0924013602011007.

  30. Nor NHM, Muhamad N, Ismail MH, Jamaludin KR, Ahmad S, Ibrahim MHI. Flow behaviour to determine the defects of green part in metal injection molding. Int J Mech Mater Eng. 2009;4:70–5.

    Google Scholar 

  31. Hausnerova B, Marcanikova L, Filip P, Saha P. Rheological characterization of powder injection moulding using feedstock based on aluminium oxide and multicomponent water-soluble polymer binder. In: Recent advances in fluid mechanics and heat and mass transfer—Proceedings of 9th IASME/WSEAS international conference on fluid mechanics and aerodynamics. FMA’11, proceedings of 9th IASME/WSEAS international conference on HTE’11. 2011. p. 245–50. https://www.scopus.com/inward/record.uri?eid=2-s2.0-83655197611&partnerID=40&md5=469550809b07714c39878dd27974b712.

  32. Li Y, Li L, Khalil KA. Effect of powder loading on metal injection molding stainless steels. J Mater Process Technol. 2007;183:432–9. https://doi.org/10.1016/j.jmatprotec.2006.10.039.

    Article  CAS  Google Scholar 

  33. Li Y, Huang B, Qu X. Viscosity and melt rheology of metal injection moulding feedstocks. Powder Metall. 1999;42:86–90. http://www.tandfonline.com/doi/full/10.1179/pom.1999.42.1.86.

  34. Gülsoy HÖ, Özgün Ö, Bilketay S. Powder injection molding of Satellite 6 powder: Sintering, microstructural and mechanical properties. Mater Sci Eng A. 2016;651:914–24. http://www.sciencedirect.com/science/article/pii/S0921509315306481.

  35. Lin D, Chung ST, Kwon YS, Park SJ. Preparation of Ti–6Al–4V feedstock for titanium powder injection molding. J Mech Sci Technol. 2016;30:1859–64. https://doi.org/10.1007/s12206-016-0343-y.

    Article  Google Scholar 

  36. Jamaludin KR, Muhamad N, Yulis SYM. Metal injection moulding (MIM) feedstock preparation with dry and wet mixing: a rheological behavior investigation. In: Advances in mechanical, manufacturing and materials engineering. 2008. p. 76–93.

  37. Loh NHH, German RMM. Statistical analysis of shrinkage variation for powder injection molding. J Mater Process Technol. 1996;59:278–84. https://doi.org/10.1016/0924-0136(95)02158-2.

    Article  Google Scholar 

  38. Kafkas F, Ebel T. Metallurgical and mechanical properties of Ti–24Nb–4Zr–8Sn alloy fabricated by metal injection molding. J Alloys Compd. 2014;617:359–66. http://linkinghub.elsevier.com/retrieve/pii/S0925838814017617.

  39. Bousson V, Bergot C, Meunier A, Barbot F, Parlier-Cuau C, Laval-Jeantet A-M, et al. CT of the middiaphyseal femur: cortical bone mineral density and relation to porosity. Radiology. 2000;217:179–87. http://pubs.rsna.org/doi/10.1148/radiology.217.1.r00se11179.

  40. Perez RA, Nakajima H, Dyment F. Diffusion in α-Ti and Zr. Mater Trans. 2003;44:2–13. https://doi.org/10.2320/matertrans.44.2.

    Article  CAS  Google Scholar 

  41. Ivasyshyn OM, Savvakin DH. Synthesis of zirconium- and titanium-based alloys with the use of their hydrides. Mater Sci. 2016;51:465–74. https://doi.org/10.1007/s11003-016-9863-y.

    Article  CAS  Google Scholar 

  42. Zhou Y, Li Y, Yang X, Cui Z, Zhu S. Influence of Zr content on phase transformation, microstructure and mechanical properties of Ti75–xNb25Zrx (x = 0–6) alloys. J Alloys Compd. 2009;486:628–32. https://doi.org/10.1016/j.jallcom.2009.07.006.

    Article  CAS  Google Scholar 

  43. Sharma B, Vajpai SK, Ameyama K. Microstructure and properties of beta Ti–Nb alloy prepared by powder metallurgy route using titanium hydride powder. J Alloys Compd. 2015;656:978–86. https://doi.org/10.1016/j.jallcom.2015.10.053.

    Article  CAS  Google Scholar 

  44. Moffat DL, Kattner UR. The stable and metastable Ti–Nb phase diagrams. Metall Trans A. 1988;19:2389–97. https://doi.org/10.1007/BF02645466.

    Article  Google Scholar 

  45. Santos DR, Pereira MS, Cairo CAA, Grac MLA, Henriques VAR, Graça MLA, et al. Isochronal sintering of the blended elemental Ti–35Nb alloy. Mater Sci Eng A. 2008;472:193–7. https://doi.org/10.1016/j.msea.2007.03.075.

    Article  CAS  Google Scholar 

  46. Han MK, Kim JY, Hwang MJ, Song HJ, Park YJ. Effect of Nb on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys. Materials (Basel). 2015;8:5986–6003. https://doi.org/10.3390/ma8095287.

    Article  CAS  Google Scholar 

  47. Sidambe AT. Biocompatibility of advanced manufactured titanium implants: a review. Materials (Basel). 2014;7:8168–88. https://doi.org/10.3390/ma7128168.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Sakarya University BAPK for their financial support of the Project (BAPK-2016-09-08-009). One of the authors (A.G.) would like thank to Miss. Hazal ERDOĞAN, from Western Sydney University, Australia, for her efforts on editing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azim Gökçe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, E., Gökçe, A., Findik, F. et al. Assessment of Ti–16Nb–xZr alloys produced via PIM for implant applications. J Therm Anal Calorim 134, 7–14 (2018). https://doi.org/10.1007/s10973-017-6808-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6808-0

Keywords

Navigation