Skip to main content
Log in

Melting and crystallization of PHB/ZnO compounds

Effect of heating and cooling cycles on phase transition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Compounds of poly(3-hydroxybutyrate) (PHB) and zinc oxide with filler content between 1 and 10% were prepared in a laboratory internal mixer. The effect of heating and cooling rates on the crystallization and melting of PHB/ZnO compounds was investigated by differential scanning calorimetry. Physical aspects of the compounds were examined by means of scanning electron microscopy and optical microscopy. Melt and cold crystallization rates rise with increasing cooling/heating rates. The melt crystallization temperatures and maximum melt crystallization rates are almost unaffected by the filler, independent on the filler concentration. The main effect of ZnO on PHB is to reduce the overall crystallinity obtained after a successive melt and cold crystallization events. For defined filler content, Mo model can be applied for the description of tested and untested heating/cooling rates, provided that a lower accuracy is acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ashter SA. Introduction to bioplastics engineering. Oxford: Elsevier; 2016.

    Google Scholar 

  2. Bastioli C. Handbook of biodegradable polymers. Shawbury: Rapra Technology; 2005. p. 552.

    Google Scholar 

  3. Zini E, Scandola M. Green composites: an overview. Polym Compos. 2011;32:1905–15.

    Article  CAS  Google Scholar 

  4. Reddya MM, Vivekan S, Misraa M, Bhatiac SK, Mohantya AK. Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci. 2013;38:1653–89.

    Article  Google Scholar 

  5. Miller ND, Williams DF. On the biodegradation of poly-β-hydroxybutyrate (PHB) homopolymer and poly-β-hydroxybutyrate-hydroxyvalerate copolymers. Biomaterials. 1987;8:129–37.

    Article  CAS  Google Scholar 

  6. Iggui K, Le Moigne N, Kaci M, Cambe S, Degorce-Dumas J, Bergeret A. A biodegradation study of poly(3-hydroxybutyrateco-3-hydroxyvalerate)/organoclay nanocomposites in various environmental conditions. Polym Degrad Stab. 2015;119:77–86.

    Article  CAS  Google Scholar 

  7. Chen G-Q, Wu Q, Jung YK, Lee SY. PHA/PHB. Compr Biotechnol. 2011;3:217–27.

    Article  Google Scholar 

  8. Doi Y. Microbial polyesters. New York: Wiley; 1990. p. 156.

    Google Scholar 

  9. Hocking PJ, Marchessault RH. Biopolymers (PHA). In: Griffin GJL, editor. Chemistry and technology of biodegradable polymers. London: Chapman & Hall/Backie; 1994.

    Google Scholar 

  10. Wellen RMR, Canedo EL. Nonisothermal melt and cold crystallization kinetics of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate)/carbon black compounds. Evaluation of Pseudo-Avrami, Ozawa, and Mo models. J Mater Res. 2016;31:729–39.

    Article  CAS  Google Scholar 

  11. Wellen RMR, Rabello MS, Araújo IC, Fechine GJM. Melting and crystallization of poly(3-hydroxybuturate). Effect of heating/cooling rates on phase transformation. Polímeros. 2015;25:296–304.

    Article  Google Scholar 

  12. Wellen RMR, Canedo EL, Rabello MS. Melting and crystallization of PHB/Carbon black compounds. Effect of heating/cooling rates on phase transformation. J Mater Res. 2015;30:3211–26.

    Article  CAS  Google Scholar 

  13. Vitorino MBC, Cipriano PB, Wellen RMR, Canedo EL, Carvalho LH. Nonisothermal melt crystallization of PHB/babassu compounds. Kinetics of crystallization. J Therm Anal Calorim. 2016;126:755–69.

    Article  CAS  Google Scholar 

  14. Wellen RMR, Canedo EL. On the Kissinger equation and the estimate of activation energies for non-isothermal cold crystallization of PET. Polym Test. 2014;40:33–8.

    Article  CAS  Google Scholar 

  15. Savenkova L, Gercberga Z, Muter O, Nikolaeva V, Dzene A, Tupureina V. PHB-based films as matrices for pesticides. Process Biochem. 2002;37:719–22.

    Article  CAS  Google Scholar 

  16. Gredes T, Gedrange T, Hinber C, Gelinsky M, Kunert-Keil C. Histological and molecular-biological analyses of poly(3-hydroxybutyrate) (PHB) patches for enhancement of bone regeneration. Ann Anat. 2015;199:36–42.

    Article  Google Scholar 

  17. Aydin HM. Science and principles of biodegradable and bioresorbable medical polymers. Duxford: Elsevier; 2017. p. 217–54.

    Google Scholar 

  18. Yu W, Lan C, Wang S, Fang P, Sun Y. Influence of zinc oxide nanoparticles on the crystallization behavior of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate)nanofibers. Polymer. 2010;51:2403–9.

    Article  CAS  Google Scholar 

  19. Dez-Pascual M, Dez-Vicente AL. Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci. 2014;17:10950–73.

    Article  Google Scholar 

  20. Hernandezbattez A, Gonzalez R, Viesca J, Fernandez J, Diazfernandez J, MacHado A, Chou R, Riba J. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear. 2008;265:422–8.

    Article  CAS  Google Scholar 

  21. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles an antimicrobial study. Sci Technol Adv Mater. 2008;9:035004.

    Article  Google Scholar 

  22. Chen P, Zhou H, Liu W, Zhang M, Du Z, Wang X. The synergistic effect of zinc oxide and phenylphosphonic acid zinc salt on the crystallization behaviour of poly(lactic acid). Polym Degrad Stab. 2015;122:25–35.

    Article  CAS  Google Scholar 

  23. Barham PJ, Keller A, Otun EL, Holmes PA. Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci. 1984;19:2781–94.

    Article  CAS  Google Scholar 

  24. Cipriano PB. Preparação e caracterização de compósitos de PHB e mesocarpo de babaçu. MSc dissertation, Federal University of Campina Grande; 2012.

  25. Wang Y, Chen S, Zhang S, Ma L, Shi G, Yang L. Crystallization and melting behavior of poly(butylenesuccinate)/silicon nitride composites: the influence of filler’s phasestructure. Thermochim Acta. 2016;627–629:68–76.

    Article  Google Scholar 

  26. Deshmukha GS, Peshwea DR, Pathaka SU, Ekhe JD. Nonisothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) (PBT) composites based on differenttypes of functional fillers. Thermochim Acta. 2014;581:41–53.

    Article  Google Scholar 

  27. Asadinezhada A, Khonakdarb HA, Häußler L, Wagenknecht U, Heinrich G. Crystallization and melting behavior of poly (ethylene succinate)in presence of graphene nanoplatelets. Thermochim Acta. 2014;586:17–24.

    Article  Google Scholar 

  28. Furushima Y, Nakada M, Takahashi H, Ishikiriyama K. Study of melting and crystallization behavior of polyacrylonitrile using ultrafast differential scanning calorimetry. Polymer. 2014;55:3075–81.

    Article  CAS  Google Scholar 

  29. Liu T, Mo Z, Wang S, Zhang H. Non-isothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J Appl Polym Sci. 1998;67:815–21.

    Article  CAS  Google Scholar 

  30. Wellen RMR, Canedo EL, Rabello MS. Nonisothermal cold crystallization of poly(ethylene terephthalate). J Mater Res. 2011;26:1107–15.

    Article  CAS  Google Scholar 

  31. Finelli L, Siracusa V, Lotti N, Marchese P, Munari A. Poly(dithiotriethylene adipate): melting behavior, crystallization kinetics and morphology. Eur Polym J. 2005;41:1909–18.

    Article  CAS  Google Scholar 

  32. Gunaratne LMWK, Shanks RA. Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur Polym J. 2005;41:2980–8.

    Article  CAS  Google Scholar 

  33. Owen AJ, Heinzel J, Skrbic Z, Divjakovic V. Crystallization and melting behaviour of PHB and PHB/HV copolymer. Polymer. 1992;33:1563–7.

    Article  CAS  Google Scholar 

  34. Liu T, Mo Z, Wang S, Zhang H. Non-isothermal melt and cold crystallization kinetics of poly(aryl ether ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to PHB Industrial SA (Brazil) for kindly supplying PHB resin and to Pedro Queiroz (CERTBIO—UFCG) for Optical Microscopy images. NGJ, IDSS and MCBN thank CNPq for their fellowship. AR thanks CAPES for his post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ries.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Silva, I.D., Guimarães Jaques, N., da Cruz Barbosa Neto, M. et al. Melting and crystallization of PHB/ZnO compounds. J Therm Anal Calorim 132, 571–580 (2018). https://doi.org/10.1007/s10973-017-6749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6749-7

Keywords

Navigation