Skip to main content
Log in

Degradation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephthalate (PET) using Coats–Redfern method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the kinetic parameters associated with pyrolysis and co-pyrolysis of mango seed kernel (MSK) and mango seed shell (MSS) with polyethylene terephthalate (PET) were determined using Coats–Redfern (CR) method. The degradation kinetics of individual biomass such as MSK, MSS and PET was studied at a heating rate of 15, 20 and 25 °C min−1 using thermogravimetric analysis (TG). The kinetic study of co-pyrolysis of MSK and PET; MSS and PET; MSK and MSS at various proportions were studied at the heating rate of 15 °C min−1. Assuming different reaction orders and using CR method, the kinetic parameters were determined and compared. Correlation coefficient (R 2) was used as the basis for comparison of the kinetic parameters and to determine the order of the reaction. This paper also characterizes the raw materials using proximate and FTIR analysis. It was observed that the order of the reaction varied with the primary, secondary and tertiary stage of degradation. The order of the reaction depends on the composition of the raw material and may vary from 0.1 to 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

A :

Pre-exponential factor

E :

Activation energy (kJ mol−1)

H :

Heating rate

R :

Universal gas constant (J mol−1 K−1)

T :

Temperature (K)

W :

Sample mass

X :

Conversion

t :

Time (s)

MSK:

Mango seed kernel

MSS:

Mango seed shell

PET:

Polyethylene terephthalate

TG:

Thermogravimetric analysis

FTIR:

Fourier transform infrared spectroscopy

References

  1. Wagner SA, Acayanka E, Lima EC, Royer B, De Souza FE, Lameira J, Alves CN. Application of Mangifera indica (mango) seeds as a biosorbent for removal of Victazol Orange 3R dye from aqueous solution and study of the biosorption mechanism. J Chem Eng. 2012;209:577–88.

    Article  Google Scholar 

  2. http://agriexchange.apeda.gov.in/Market%20Profile/one/Mango.aspx. Accessed 11 April 2016.

  3. Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag. 2000;41:633–46.

    Article  CAS  Google Scholar 

  4. Shadangi KP, Mohanty K. Comparison of yield and fuel properties of thermal and catalytic Mahua seed pyrolytic oil. Fuel. 2014;117:372–80.

    Article  CAS  Google Scholar 

  5. Shadangi KP, Mohanty K. Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel. Fuel. 2014;15:434–42.

    Article  Google Scholar 

  6. Shadangi KP, Mohanty K. Production and characterization of pyrolytic oil by catalytic pyrolysis of Niger seed. Fuel. 2014;126:109–15.

    Article  CAS  Google Scholar 

  7. Shadangi KP, Mohanty K. Characterization of non-conventional oil containing seeds towards the production of bio-fuel. J Renew Sustain Energy. 2013;5:033111.

    Article  Google Scholar 

  8. Singh RK, Shadangi KP. Liquid fuel from Castor seeds by pyrolysis. Fuel. 2011;90:2538–44.

    Article  CAS  Google Scholar 

  9. Shadangi KP, Singh RK. Thermolysis of polanga seed cake to bio-oil using semi batch reactor. Fuel. 2012;97:450–6.

    Article  CAS  Google Scholar 

  10. Koul M, Shadangi KP, Mohanty K. Thermo-chemical conversion of Kusum seed: a possible route to produce alternate fuel and chemicals. J Anal Appl Pyrol. 2014;110:291–6.

    Article  CAS  Google Scholar 

  11. Shadangi KP, Mohanty K. Effect of co-pyrolysis of Mahua seed and waste polystyrene on quality of liquid fuel. J Renew Sustain Energy. 2014;6:053142.

    Article  Google Scholar 

  12. Shadangi KP, Mohanty K. Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel. Fuel. 2015;153:492–8.

    Article  CAS  Google Scholar 

  13. Shadangi KP, Mohanty K. Stability analysis of Mahua seed and waste polystyrene co-pyrolytic oil. IJREC. 2016;1(1):1–7.

    Google Scholar 

  14. Onal E, Uzun BB, Putun AE. An experimental study on bio-oil production from copyrolysis of potato skin with high density polyethylene (HDPE). J Fuel Process Technol. 2012;104:265–370.

    Article  Google Scholar 

  15. John E, White W, Catallo J, Legendrea BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol. 2011;91:1–33.

    Article  Google Scholar 

  16. Chen T, Li L, Zhao R, Wu J. Pyrolysis kinetic analysis of the three pseudocomponents of biomass–cellulose, hemicellulose and lignin. J Therm Anal Calorim. 2017;128(3):1825–32.

    Article  CAS  Google Scholar 

  17. Suriapparao DV, Ojha DK, Ray T, Vinu R. Kinetic analysis of co-pyrolysis of cellulose and polypropylene. J Therm Anal Calorim. 2014;117(3):1441–5.

    Article  CAS  Google Scholar 

  18. Chunshan L, Suzuki K. Kinetic analyses of biomass tar pyrolysis using the distributed activation energy model by TG/DTA technique. J Therm Anal Calorim. 2009;98:261.

    Article  Google Scholar 

  19. Tonbul Y. Pyrolysis of pistachio shell as a biomass. J Therm Anal Calorim. 2008;91(2):641–7.

    Article  CAS  Google Scholar 

  20. Zanatta ER, Reinehr TO, Awadallak JA, et al. Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim. 2016;125(1):437–45.

    Article  CAS  Google Scholar 

  21. Han B, Chen Y, Wu Y, Hua D, et al. Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis. J Therm Anal Calorim. 2014;115(1):227–35.

    Article  CAS  Google Scholar 

  22. Braga RM, Melo DMA, Aquino FM, et al. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim. 2014;115(2):1915–20.

    Article  CAS  Google Scholar 

  23. Shadangi KP, Mohanty K. Kinetic study and thermal analysis of the pyrolysis of non-edible oil seed powders by thermogravimetric and differential scanning calorimetric analysis. Renew Energy. 2014;63:337–44.

    Article  CAS  Google Scholar 

  24. Cheng K, Winter WT, Stipanovic AJ. A modulated TGA approach to the kinetics of lignocellulosic biomass pyrolysis/combustion. J Polym Degrad Stab. 2012;97:1606–15.

    Article  CAS  Google Scholar 

  25. Perez MG, Chaala A, Yang J, Roy C. Copyrolysis of sugarcane bagasse with petroleum residue. Part I: thermogravimetric analysis. Fuel. 2001;80:1245–58.

    Article  Google Scholar 

  26. Indira V, Parameswaram G. Thermal decomposition kinetics of salicylideneaminofluorene complexes of cobalt (II) and nickel (II). Thermochim Acta. 1986;101:145–54.

    Article  CAS  Google Scholar 

  27. Zhou L, Wang Y, Huang Q, Cai J. Thermogravimetric characteristics and kinetics of plastic and biomass blends copyrolysis. J Fuel Process Technol. 2006;87:963–9.

    Article  CAS  Google Scholar 

  28. Aboulkas A, Harfi KE, Bouadili A, Nadifyine M, Benchanaa M, Mokhilisse A. Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. J Fuel Process Technol. 2009;90:722–8.

    Article  CAS  Google Scholar 

  29. ASTM D 3173-3187. Standard test method for moisture in the analysis sample of coal and coke in gaseous fuels. Coal Coke. 1989;05-05:300.

  30. ASTM D 3175-89. Standard test methods for volatile matter in the analysis sample of coal and coke in gaseous fuels. Coal Coke. 1989;05-05:305.

  31. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of ash in biomass, Laboratory analytical procedure, Technical Report, January 2008. NREL/TP-510-42622.

  32. Zhang X, Xu M, Sun R, Sun L. Study of biomass pyrolysis kinetics. J Eng Gas Turbines Power. 2006;128(3):493–6.

    Article  CAS  Google Scholar 

  33. Marin NS, Collura VI, Sharypov NG, Beregovtsova SV, Baryshnikov BN, Kutnetzov V, Cebolla JV. Copyrolysis of wood biomass and synthetic polymers mixtures Part II: characterisation of the liquid phases. J Anal Appl Pyrol. 2002;65:41–55.

    Article  CAS  Google Scholar 

  34. Elizalde-Gonzalez MP, Hernandez-Montya V. Characterization of Mango pit as raw material in the preparation of activated carbon for waste water treatment. J Biochem Eng. 2007;36:230–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the analytical facilities at the analytical laboratory at Department of Chemical Engineering, IIT Guwahati, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubha Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganeshan, G., Shadangi, K.P. & Mohanty, K. Degradation kinetic study of pyrolysis and co-pyrolysis of biomass with polyethylene terephthalate (PET) using Coats–Redfern method. J Therm Anal Calorim 131, 1803–1816 (2018). https://doi.org/10.1007/s10973-017-6597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6597-5

Keywords

Navigation