Skip to main content
Log in

Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In present study, the heat transfer of laminar and turbulent flow of water/Al2O3 nanofluid in the volume fraction of φ = 0–4% of solid nanoparticles in Reynolds numbers of 500–25,000 have been numerically investigated. The studied geometrics is a three-dimensional tube with the diameter of D = 2 cm and the length of L = 50 cm. In order to increase the heat transfer inside horizontal tube, the twisted tape in different aspect ratios has been used. In this research, the considered geometrics with aspect parameters, such as the twisted ratios (P/W) of 3, 3.5 and 4, the space ratios (C/D) of 0.3, 0.4 and 0.5 and the tape width ratios (W/D) at the range of 0.5–0.9, has been investigated. The results indicate that, in the turbulent flow, the use of solid nanoparticle in higher volume fractions and Reynolds numbers, comparing to the laminar flow, improves heat transfer. The existence of solid nanoparticles in lower twisted ratios (P/W) has great effect on the heat transfer enhancement. In the laminar flow, by increasing the width of twisted tape and the concentration of nanoparticles, heat transfer enhances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C :

Distance between the twisted tape to the tube diameter (m)

C p :

Heat capacity (J kg−1 K−1)

D :

Tube diameter (m)

F :

Friction factor

H :

Convective heat transfer coefficient (W m−2 K−1)

K :

Thermal conductivity coefficient (W m−1 K−1)

L :

Tube length (m)

Nu :

Nusselt number

P :

Pressure (Pa)

P :

Twisting pitch (m)

Pr :

Prandtl number

Q″:

Heat flux (W m−2)

R :

Radius of the tube (m)

Re :

Reynolds number

T :

Temperature (K)

U in :

Inlet velocity in x directions (m s−1)

W :

Width twisted tape (m)

x, y, z :

Cartesian coordinates

∆:

Difference

δ :

Tape thickness

φ :

Nanoparticles volume fraction

μ :

Dynamic viscosity (Pa s)

ρ :

Density (kg m−3)

υ :

Kinematics viscosity (m2 s−1)

Ave:

Average

C :

Cold

Eff:

Effective

F :

Base fluid (pure water)

H :

Hot

In:

Inlet

Nf:

Nanofluid

P :

Solid nanoparticles

W :

Wall

References

  1. Karimipour A, Alipour H, Akbari OA, Semiromi DT, Esfe MH. Studying the effect of indentation on flow parameters and slow heat transfer of water–silver nanofluid with varying volume fraction in a rectangular two-dimensional microchannel. Ind J Sci Technol. 2015;8:51707.

    Google Scholar 

  2. Choi J, Zhang Y. Numerical simulation of laminar forced convection heat transfer of Al2O3 water nanofluid in a pipe with return bend. Int J Therm Sci. 2012;55:90–102.

    Article  CAS  Google Scholar 

  3. Akbari OA, Goodarzi M, Safaei MR, Zarringhalam M, Shabani GRAS, Dahari M. A modified two-phase mixture model of nanofluid flow and heat transfer in 3-D curved microtube. Adv Powder Technol. 2016;27:2175–85.

    Article  CAS  Google Scholar 

  4. Esfe MH, Akbari M, Semiromi DT, Karimiopour A, Afrand M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transf Res. 2014;45:409–32.

    Article  Google Scholar 

  5. Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enchantment in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Trans A: Appl. 2014;66:1321–40.

    Article  CAS  Google Scholar 

  6. Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Phys E. 2017;86:68–75.

    Article  CAS  Google Scholar 

  7. Sundar LS, Sharma KV. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Trans. 2010;53:1409–16.

    Article  CAS  Google Scholar 

  8. Promvonge P, Eiamsa-ard S. Heat transfer behaviors in a tube with combined conical ring and twisted-tape inserts. Int Commun Heat Mass Transf. 2007;34:849–59.

    Article  Google Scholar 

  9. Guo J, Fan A, Zhang X, Liu W. A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape. Int J Therm Sci. 2012;50:1263–70.

    Article  Google Scholar 

  10. Murugesan P, Mayilsamy K, Suresh S, Srinivasan PSS. Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert. Int Commun Heat Mass Transf. 2011;38:329–34.

    Article  Google Scholar 

  11. Yong-Zhang C, Mao-cheng T. Three-dimensional numerical simulation of thermal hydraulic performance of a circular tube with edgefold-twisted-tape inserts. J Hydrodyn. 2010;22:662–70.

    Google Scholar 

  12. Hejazi V, Akhavan-Behabadi MA, Afshari A. Experimental investigation of twisted tape inserts performance on condensation heat transfer enhancement and pressure drop. Int Commun Heat Mass Transf. 2010;37:1376–87.

    Article  CAS  Google Scholar 

  13. Eiamsa-ard S, Promvonge P. Thermal characteristics in round tube fitted with serrated twisted tape. Appl Therm Eng. 2010;30:1673–82.

    Article  Google Scholar 

  14. Saha SK. Thermohydraulics of turbulent flow through rectangular and square ducts with axial corrugation roughness and twisted-tapes with and without oblique teeth. Exp Therm Fluid Sci. 2010;34:744–52.

    Article  Google Scholar 

  15. Klaczak A. Heat transfer by laminar flow in a vertical pipe with twisted-tape inserts. Heat Mass Trans. 2000;36:195–9.

    Article  CAS  Google Scholar 

  16. Ferroni P, Block RE, Todreas NE, Bergles AE. Experimental evaluation of pressure drop in round tubes provided with physically separated, multiple, short-length twisted tapes. Exp Therm Fluid Sci. 2011;35:1357–69.

    Article  Google Scholar 

  17. Wang Y, Hou M, Deng X, Li L, Huang C, Huang H, Zhang G, Chen C, Huang W. Configuration optimization of regularly spaced short-length twisted tape in a circular tube to enhance turbulent heat transfer using CFD modeling. Appl Therm Eng. 2011;31:1141–9.

    Article  Google Scholar 

  18. Yadav A. Effect of half length twisted tape turbulator on heat transfer and pressure drop characteristics inside a double pipe U-bend heat exchanger. Jordan J Mech Ind Eng. 2009;3:17–22.

    Google Scholar 

  19. Eiamsa-ard S, Thianpong C, Eiamsa-ard P, Promvonge P. Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem. Int Commun Heat Mass Transf. 2010;37:39–46.

    Article  Google Scholar 

  20. Hata K, Masuzaki S. Twisted-tape-induced swirl flow heat transfer and pressure drop in a short circular tube under velocities controlled. Nucl Eng Des. 2011;241:4434–44.

    Article  CAS  Google Scholar 

  21. Eiamsa-ard S. Study on thermal and fluid flow characteristics in turbulent channel flows with multiple twisted tape vortex generators. Int Commun Heat Mass Transf. 2010;31:644–51.

    Article  Google Scholar 

  22. Eiamsa-ard S, Thianpong C, Eiamsa-ard P, Promvonge P. Convective heat transfer in a circular tube with short-length twisted tape insert. Int Commun Heat Mass Transf. 2009;36:365–71.

    Article  CAS  Google Scholar 

  23. Eiamsa-ard S, Wongcharee K, Sripattanapipat S. 3-D numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes. Int Commun Heat Mass Transf. 2009;36:947–55.

    Article  Google Scholar 

  24. Manca O, Nardini S, Ricci D. Numerical investigation of air forced convection in channels with differently shaped transverse ribs. Int J Numer Methods Heat Fluid Flow. 2010;21:618–39.

    Article  Google Scholar 

  25. Aminossadati SM, Raisi A, Ghasemi B. Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. Int J Nonlinear Mech. 2011;46:1373–82.

    Article  Google Scholar 

  26. Akbari OA, Karimipour A, Semiromi DT, Safaei MR, Alipour H, Goodarzi M, Dahari M. Investigation of Rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two dimensional rib microchannel. Appl Math Comput. 2016;290:135–53.

    Google Scholar 

  27. Safikhani H, Abbasi F. Numerical study of nanofluid flow in flat tubes fitted with multiple twisted tapes. Adv Powder Technol. 2015;26(6):1609–17.

    Article  CAS  Google Scholar 

  28. Akbari OA, Toghraie D, Karimipour A. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Adv Mech Eng. 2015;7:1–11.

    Article  Google Scholar 

  29. Azmi WH, Sharma KV, Sarma PK, Rizalman M, Shahrani A, Syam Sundar L. Numerical validation of experimental heat transfer coefficient with SiO2 nanofluid flowing in a tube with twisted tape inserts. Appl Therm Eng. 2014;73:296–306.

    Article  CAS  Google Scholar 

  30. Safaei MR, Goodarzi M, Akbari OA, Shadloo MS, Dahari M, Performance evaluation of nanofluids in an inclined ribbed microchannel for electronic cooling applications. In: Sohel Murshed SM, editors. Electronics cooling. InTech. doi:10.5772/62898.

  31. Brinkman HC. The viscosity of concentrated suspensions and solution. J Chem Phys. 1952;20:571–81.

    Article  CAS  Google Scholar 

  32. Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech B/Fluids. 2017;61:25–32.

    Article  Google Scholar 

  33. Chandrasekar M, Suresh S, Chandra BA. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts. Exp Therm Fluid Sci. 2010;34:122–30.

    Article  CAS  Google Scholar 

  34. Maxwell JC. A treatise on electricity and magnetism. 2nd ed. Oxford: Clarendon; 1881.

    Google Scholar 

  35. Kumar Pal S, Saha S. Laminar flow and heat transfer through a circular tube having integral transverse corrugations and fitted with centre-cleared twisted-tape. Exp Therm Fluid Sci. 2014;57:388–95.

    Article  Google Scholar 

  36. Akbari OA, Toghraie D, Karimipour A. Numerical simulation of heat transfer and turbulent flow of water nanofluids copper oxide in rectangular microchannel with semi attached rib. Adv Mech Eng. 2016;8:1–25.

    Article  Google Scholar 

  37. Bhuiya MMK, Chowdhury MSU, Saha M, Islam MT. Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts. Int Commun Heat Mass Transf. 2013;46:49–57.

    Article  Google Scholar 

  38. Alipour H, Karimipour A, Safaei MR, Semiromi DT, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver–water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Phys E. 2017;88:60–76.

    Article  CAS  Google Scholar 

  39. Eiamsa-ard S, Thianpong C, Eiamsa-ard P. Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes. Therm Fluid Sci. 2010;34:53–62.

    Article  Google Scholar 

  40. Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:38–44.

    Article  CAS  Google Scholar 

  41. Esfe MH, Yan WM, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water(40%)–ethylene–glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8.

    Article  Google Scholar 

  42. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125(1):527–35.

    Article  CAS  Google Scholar 

  43. Semiromi DT, Azimian AR. Molecular dynamics simulation of annular flow boiling with the modified Lennard–Jones potential function. Heat Mass Transf. 2012;48:141–52.

    Article  CAS  Google Scholar 

  44. Toghraie D, Alempour SMB, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8.

    Article  CAS  Google Scholar 

  45. Esfe MH, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. Therm Anal. 2015. doi:10.1007/s10973-014-4328-8.

    Google Scholar 

  46. Esfe MH, Afrand M, Gharehkhani S, Rostamian H, Toghraie D, Dahari M. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Int Commun Heat Mass Transf. 2016;76:202–8.

    Article  Google Scholar 

  47. Esfe MH, Afrand M, Yan WM, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–8.

    Article  Google Scholar 

  48. Esfe MH, Ahangar MRH, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.

    Article  Google Scholar 

  49. Noorian N, Toghraie D, Azimian AR. The effects of surface roughness geometry of flow undergoing Poiseuille flow by molecular dynamics simulation. Heat Mass Transf. 2014;50:95–104.

    Article  CAS  Google Scholar 

  50. Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9.

    Article  CAS  Google Scholar 

  51. Noorian N, Toghraie D, Azimian AR. Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry. Heat Mass Transf. 2014;50(1):105–13.

    Article  CAS  Google Scholar 

  52. Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Exp Therm Fluid Sci. 2016;76:342–51.

    Article  CAS  Google Scholar 

  53. Semiromi DT, Azimian AR. Molecular dynamics simulation of liquid–vapor phase equilibrium by using the modified Lennard–Jones potential function. Heat Mass Transf. 2010;46(3):287–94.

    Article  Google Scholar 

  54. Semiromi DT, Azimian AR. Nanoscale Poiseuille flow and effects of modified Lennard–Jones potential function. Heat Mass Transf. 2010;46(7):791–801.

    Article  Google Scholar 

  55. Semiromi DT, Azimian AR. Molecular dynamics simulation of nonodroplets with the modified Lennard–Jones potential function. Heat Mass Transf. 2011;47(5):579–88.

    Article  CAS  Google Scholar 

  56. Toghraie D, Azimian AR. Molecular dynamics simulation of liquid–vapor interface on the solid surface using the GEAR’S algorithm. Dynamics. 2009;182:15493–8.

    Google Scholar 

  57. Aghanajafi A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water–CuO nanofluid inside a triangular duct. Phys E. 2017;85:103–8.

    Article  CAS  Google Scholar 

  58. Nazari N, Toghraie D. Numerical simulation of heat transfer and fluid flow of water–CuO nanofluid in a sinusoidal channel with a porous medium. Phys E. 2017;87:134–40.

    Article  CAS  Google Scholar 

  59. Rezaei M, Azimian AR, Toghraie D. The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study. Heat Mass Transf. 2015;51:661–70.

    Article  CAS  Google Scholar 

  60. Rezaei M, Azimian AR, Toghraie D. Molecular dynamics study of an electro-kinetic fluid transport in a charged nanochannel based on the role of the stern layer. Phys A. 2015;426:25–34.

    Article  CAS  Google Scholar 

  61. Esfe MH, Saedodin S, Bahiraei M, Mahian ODT, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.

    Article  Google Scholar 

  62. Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi SN. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys A. 2014;402:150–68.

    Article  CAS  Google Scholar 

  63. Esfe MH, Saedodin S, Yan WM, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124:455–60.

    Article  Google Scholar 

  64. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  65. Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Therm Fluid Sci. 2016;76:221–7.

    Article  CAS  Google Scholar 

  66. Ahmadi Afrand M, Nadooshan A, Hassani M, Yarmand H, Dahari M. Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental dat. Int Commun Heat Mass Transf. 2016;77:49–53.

    Article  Google Scholar 

  67. Nazari Afrand M, Najafabadi K, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2–MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    Article  Google Scholar 

  68. Dardan E, Afrand M, Isfahani AHM. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.

    Article  CAS  Google Scholar 

  69. Soltanimehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl Therm Eng. 2016;105:716–23.

    Article  CAS  Google Scholar 

  70. Esfe MH, Rostamian H, Afrand M, Karimipour A, Hassani M. Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;68:98–103.

    Article  Google Scholar 

  71. Esfe MH, Afrand M, Karimipour A, Yan WM, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int Commun Heat Mass Transf. 2015;67:173–5.

    Article  Google Scholar 

  72. Vafaei M, Afrand M, Sina N, Kalbasi R, Surani F, Teimouri H. Evaluation of thermal conductivity of MgO–MWCNTs/EG hybrid nano fluids based on experimental data by selecting optimal artificial neural networks. Phys E. 2017;85:90–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, O.A., Afrouzi, H.H., Marzban, A. et al. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim 129, 1911–1922 (2017). https://doi.org/10.1007/s10973-017-6372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6372-7

Keywords

Navigation