Skip to main content
Log in

Study on glass transition temperature and kinetics of Cu–Zr glassy alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ideal glass transition temperatures and transition activation energies of Cu46Zr45Al9 metallic glass was investigated using differential scanning calorimetry (DSC). The Vogel–Fulcher–Tammann temperature T 0 and Kauzmann temperature T k were determined, respectively, and T 0 is greater than T k. Meanwhile, activation energies of glass transition E g, onset crystallization E x and crystallization peak E p were deduced to be 634.2 ± 15, 444 ± 16.1 and 366.8 ± 25.1 kJ mol−1, which indicates that glass transition is harder than crystallization process to proceed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inoue A, Takeuchi A, Shen B. Formation and functional properties of Fe-based bulk glassy alloys. Mater Trans. 2001;42:970–8.

    Article  CAS  Google Scholar 

  2. Yu P, Bai HY, Wang WH, Liu XJ. Superior glass-forming ability of CuZr alloys from minor additions. J Mater Res. 2006;21:1674–9.

    Article  CAS  Google Scholar 

  3. Inoue A, Shen BLA. New Fe-based bulk glassy alloy with outstanding mechanical properties. Adv Mater. 2004;16:2189–92.

    Article  CAS  Google Scholar 

  4. Zhang Y, Chen J, Chen GL, Liu XJ. Glass formation mechanism of minor yttrium addition in CuZrAl alloys. Appl Phys Lett. 2006;89:131904.

    Article  Google Scholar 

  5. Schroers J, Johnson WL. Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system. Appl Phys Lett. 2004;84:3666–8.

    Article  CAS  Google Scholar 

  6. Ou X, Zhang GQ, Xu X, Wang LN, Liu JF, Jiang JZ. Crystallization kinetics in Cu35Ag15Zr45Al15 metallic glass. J Alloys Compd. 2007;441:181–4.

    Article  CAS  Google Scholar 

  7. Venkataraman S, Biswas K, Wei BC, Sordelet DJ, Eckert J. On the fragility of Cu47Ti33Zr11Ni8Si1 metallic glass. J Phys D Appl Phys. 2006;39:2600–8.

    Article  CAS  Google Scholar 

  8. Fan GJ, Löffler JF, Wunderlich RK, Fecht HJ. Thermodynamics, enthalpy relaxation and fragility of the bulk metallic glass-forming liquid Pd43Ni10Cu27P20. Acta Mater. 2004;52:667–74.

    Article  CAS  Google Scholar 

  9. Zhang B, Wang RJ, Zhao DQ, Pan MX, Wang WH. Properties of Ce-based bulk metallic glass-forming alloys. Phys Rev B. 2004;70:224208.

    Article  Google Scholar 

  10. Nagase T, Hosokawa T, Takizawa K, Umakoshi Y. Electron-irradiation-induced nano-crystallization in quasicrystal-forming Zr-based metallic glass. Intermetallics. 2009;17:657–8.

    Article  CAS  Google Scholar 

  11. Cao QP, Li JF, Zhou YH. Glass forming ability of metallic glasses evaluated by a new criterion. Chin Phys Lett. 2008;25:3459–62.

    Article  CAS  Google Scholar 

  12. Qiao JC, Pelletier JM, Wang Q, Jiao W, Wang WH. On calorimetric study of the fragility in bulk metallic glasses with low glass transition temperature: (Ce0.72Cu0.28)90−xAl10Fex (x = 0.5 or 10) and Zn38Mg12Ca32Yb18. Intermetallics. 2011;19:1367–73.

    Article  CAS  Google Scholar 

  13. Tanaka H. Relation between thermodynamics and kinetics of glass-forming liquids. Phys Rev Lett. 2003;90:055701.

    Article  Google Scholar 

  14. Senkov ON. Correlation between fragility and glass-forming ability of metallic alloys. Phys Rev B. 2007;76:104202.

    Article  Google Scholar 

  15. Guo NB, Tang CY, Wang J, Hu CH, Zhou HY. Kinetics of glass transition of La65Al20Co15 metallic glass. J Alloys Compd. 2015;629:11–5.

    Article  CAS  Google Scholar 

  16. An WK, Xiong X, Liu Y, Li JH, Cai AH, Luo Y, Li TL, Li XS. Investigation of glass forming ability and crystallization kinetics of Zr63.5Al10.7Cu10.7Ni15.1 bulk metallic glass. J Alloys Compd. 2009;486:288–92.

    Article  CAS  Google Scholar 

  17. Yuan ZZ, Chen XD, Wang BX, Chen ZJ. Crystallization kinetics of melt-spun Co43Fe20Ta5.5B31.5 amorphous alloy. J Alloys Compd. 2005;399:166–72.

    Article  CAS  Google Scholar 

  18. Yang YJ, Xing DW, Shen J, Sun JF, Wei SD, He HJ, Mccartney DG. Crystallization kinetics of a bulk amorphous Cu–Ti–Zr–Ni alloy investigated by differential scanning calorimetry. J Alloys Compd. 2006;415:106–10.

    Article  CAS  Google Scholar 

  19. Xia L, Tang MB, Xu H, Pan MX, Zhao DQ, Wang WH, Dong YD. Kinetic nature of hard magnetic Nd50Al15Fe15Co20 bulk metallic glass with distinct glass transition. J Mater Res. 2004;19:1307–10.

    Article  CAS  Google Scholar 

  20. Ichitsubo T, Matsubara E, Numakura H, Tananka K. Glass-liquid transition in a less-stable metallic glass. Phys Rev B. 2005;72:052201.

    Article  Google Scholar 

  21. Zhao ZF, Zhang Z, Wen P, Pan MX, Zhao DQ, Wang WH, Wang WL. A highly glass-forming alloy with low glass transition temperature. Appl Phys Lett. 2003;82:4699–701.

    Article  CAS  Google Scholar 

  22. Wang ZX, Zhao DQ, Pan MX, Wang WH, Okada T, Utsumi W. Crystallization mechanism of Cu-based supercooled liquid under ambient and high pressure. Phys Rev B. 2004;69:092202.

    Article  Google Scholar 

  23. Busch R, Kim YJ, Johnson WL. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy. J Appl Phys. 1994;77:4039–43.

    Article  Google Scholar 

  24. Li PY, Wang G, Ding D, Shen J. Glass forming ability, thermodynamics and mechanical properties of Ti–Cu–Ni–Zr–Hf bulk metallic glasses. Mater Des. 2014;53:145–51.

    Article  CAS  Google Scholar 

  25. Okamoto PR, Lam NQ, Rehn LE. Physics of crystal-to-glass transformations. Solid State Phys. 1999;52:1.

    Article  CAS  Google Scholar 

  26. Busch R, Johnson WL. The kinetic glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass former-supercooled liquids on a long time scale. Appl Phys Lett. 1998;72:2695–7.

    Article  CAS  Google Scholar 

  27. Zhuang YX, Wang WH, Zhang Y, Pan MX, Zhao DQ. Crystallization kinetics and glass transition of Zr41Ti14Cu12.5Ni10−xFexBe22.5 bulk metallic glasses. Appl Phys Lett. 1999;75:2392–4.

    Article  CAS  Google Scholar 

  28. Qiao JC, Pelletier JM. Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). J Non-Cryst Solids. 2011;357:2590–4.

    Article  CAS  Google Scholar 

  29. Tsarkov AA, Zanaeva EN, Churyumov AY, Ketov SV, Louzguine-luzgin DV. Crystallization kinetics of Mg–Cu–Yb–Ca–Ag metallic glasses. Mater Charact. 2016;111:75–80.

    Article  CAS  Google Scholar 

  30. Hu L, Ye F. Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass. J Alloys Compd. 2013;557:160–5.

    Article  CAS  Google Scholar 

  31. Wu JL, Pan Y, Huang JD, Pi JH. Non-isothermal crystallization kinetics and glass-forming ability of Cu–Zr–Ti–In bulk metallic glasses. Thermochim Acta. 2013;552:15–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Natural Science Foundation of China (Nos. 51371133, 51671151, 51401156 and 51301125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengyun Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Jian, Z., Jiang, B. et al. Study on glass transition temperature and kinetics of Cu–Zr glassy alloys. J Therm Anal Calorim 129, 1429–1433 (2017). https://doi.org/10.1007/s10973-017-6336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6336-y

Keywords

Navigation