Skip to main content
Log in

Reference material for temperature calibration of differential scanning calorimeters above 1400 °C

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Platinum crucible pans are widely used for differential scanning calorimetry (DSC) at temperatures above the aluminum melting point (about 660 °C) due to good signal quality, chemical inertness and easiness of cleaning. However, reference materials commonly used for the calibration of DSC equipment operating with platinum pans exhibit phase transition temperatures no higher than about 1000 °C. In this work, the solid–solid, reversible, \(\alpha ^{\prime }_{\mathrm{H}}\rightarrow \alpha\) phase transition of calcio-olivine, \(\hbox {Ca}_{2}\hbox {SiO}_{4},\) was found to produce a marked DSC peak with an onset temperature of \(1453^{+1}_{-2}\,^{\circ }\hbox {C}\) and a relatively small hysteresis. This compound is compatible with platinum crucibles and fulfills the requirements to be used as reference material for high-temperature calibration of differential scanning calorimeters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Höhne GWH, Hemminger WF, Flammersheim H-J. Differential scanning calorimetry. Berlin: Springer; 2003.

    Book  Google Scholar 

  2. Boettinger WJ, Kattner UR, Moon K-W, Perepezko JH. DTA and heat-flux DSC measurements of alloy melting and freezing. NIST recommended practice guide. Special Publication No. 960-15. 2006. http://www.nist.gov/customcf/get_pdf.cfm?pub_id=901091. Accessed 28 Oct 2015.

  3. Della Gatta G, Richardson MJ, Sarge SM, Stølen S. Standards, calibration, and guidelines in microcalorimetry part 2. Calibration standards for differential scanning calorimetry (IUPAC technical report). Pure Appl Chem. 2006;78:1455–76.

    Google Scholar 

  4. Sarge SM, Gmelin E, Höhne GWH, Cammenga HK, Hemminger WF, Eysel W. The caloric calibration of scanning calorimeters. Thermochim Acta. 1994;247:129–68.

    Article  CAS  Google Scholar 

  5. Preston-Thomas H. The International Temperature Scale of 1990 (ITS-90). Metrologia. 1990;27:3–10.

    Article  Google Scholar 

  6. Sabbah R, An Xu-wu, Chickos JS, Planas Leitão ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.

    Article  CAS  Google Scholar 

  7. Gmelin E, Sarge SM. Temperature, heat and heat flow rate calibration of differential scanning calorimeters. Thermochim Acta. 2000;347:9–13.

    Article  CAS  Google Scholar 

  8. Cammenga HK, Eysel W, Gmelin E, Hemminger WF, Höhne GWH, Sarge SM. The temperature calibration of scanning calorimeters. Part 2. Calibration substances. Thermochim Acta. 1993;219:333–42.

    Article  CAS  Google Scholar 

  9. Kaiser G. Not just clean, but ultra-clean!. OnSet (Netzsch). 2007;3:9–10.

    Google Scholar 

  10. Fegley B Jr, Osborne R. Practical chemical thermodynamics for geoscientists. Amsterdam: Elsevier; 2013.

    Google Scholar 

  11. Warshaw I, Roy R. Polymorphism of the rare earth sesquioxides. J Phys Chem. 1961;65:2048–51.

    Article  CAS  Google Scholar 

  12. MacChesney JB, Muan A. Phase equilibria at liquidus temperatures in the system iron oxide–titanium oxide at low oxygen pressures. Am Mineral. 1961;46:572–82.

    CAS  Google Scholar 

  13. Nerád I, Mikšíková E, Kosa L, Adamkovičová K. Premelting at fusion of titanite \(\text{CaTiSiO$_{5}$}\): a calorimetric study. Phys Chem Miner. 2013;40:597–602.

    Article  Google Scholar 

  14. Groves GW. Phase-transformations in dicalcium silicate. J Mater Sci. 1983;18:1615–24.

    Article  CAS  Google Scholar 

  15. Chan CJ, Kriven WM, Young JF. Physical stabilization of the \(\beta \rightarrow \gamma\) transformation in dicalcium silicate. J Am Ceram Soc. 1992;75:1621–7.

    Article  CAS  Google Scholar 

  16. Rodriguez JL, Rodriguez MA, De Aza S, Pena P. Reaction sintering of zircon–dolomite mixtures. J Eur Ceram Soc. 2001;21:343–54.

    Article  CAS  Google Scholar 

  17. Vogan JW, Hsu L, Stetson AR. Thermal barrier coatings for thermal insulation and corrosion resistance in industrial gas turbine engines. Thin Solid Films. 1981;84:75–87.

    Article  CAS  Google Scholar 

  18. Jansen F, Wei X, Dorfman MR, Peters JA, Nagy DR. Performance of dicalcium silicate coatings in hot-corrosive environment. Surf Coat Technol. 2002;149:57–61.

    Article  CAS  Google Scholar 

  19. Gou Z, Chang J, Zhai W. Preparation and characterization of novel bioactive dicalcium silicate ceramics. J Eur Ceram Soc. 2005;25:1507–14.

    Article  CAS  Google Scholar 

  20. Zhong H, Wang L, Fan Y, He L, Lin K, Jiang W, Chang J, Chen L. Mechanical properties and bioactivity of \(\beta\)-\(\text{Ca$_{2}$SiO$_{4}$}\) ceramics synthesized by spark plasma sintering. Ceram Int. 2011;37:2459–65.

    Article  CAS  Google Scholar 

  21. Smith DK, Majumdar AJ, Ordway F. Re-examination of the polymorphism of dicalcium silicate. J Am Ceram Soc. 1961;44:405–11.

    Article  CAS  Google Scholar 

  22. Mumme WG, Hill RJ, BushnellWye G, Segnit ER. Rietveld crystal-structure refinements, crystal-chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrb Mineral Abh. 1995;169:35–68.

    CAS  Google Scholar 

  23. Mumme WG, Cranswick LMD, Chakoumakos BC. Rietveld crystal structure refinements from high temperature neutron powder diffraction data for the polymorphs of dicalcium silicate. Neues Jahrb Mineral Abh. 1996;170:171–88.

    CAS  Google Scholar 

  24. Remy C, Andrault D, Madon M. High-temperature, high-pressure X-ray investigation of dicalcium silicate. J Am Ceram Soc. 1997;80:851–60.

    Article  CAS  Google Scholar 

  25. Remy C, Guyot F, Madon M. High pressure polymorphism of dicalcium silicate \(\text{Ca$_{2}$SiO$_{4}$}\). A transmission electron microscopy study. Phys Chem Miner. 1995;22:419–27.

    Article  CAS  Google Scholar 

  26. Newman ES, Wells LS. Effect of some added materials on dicalcium silicate. J Res Nat Bur Stand. 1946;36:137–58.

    Article  CAS  Google Scholar 

  27. Guerrero A, Goñi S, Moragues A, Dolado JS. Microstructure and mechanical performance of belite cements from high calcium coal fly ash. J Am Ceram Soc. 2005;88:1845–53.

    Article  CAS  Google Scholar 

  28. Wesselsky A, Jensen OM. Synthesis of pure Portland cement phases. Cement Concr Res. 2009;39:973–80.

    Article  CAS  Google Scholar 

  29. Kriven WM. Possible alternative transformation tougheners to zirconia: crystallographic aspects. J Am Ceram Soc. 1988;71:1021–30.

    Article  CAS  Google Scholar 

  30. Cruz RT, Bragança SR. Evaluation of the protective \(\text{C$_{2}$S}\) layer in the corrosion process of doloma-C refractories. Ceram Int. 2015;41:4775–81.

    Article  Google Scholar 

  31. Eysel W, Hahn T. Polymorphism and solid solution of \(\text{Ca$_{2}$GeO$_{4}$}\) and \(\text{Ca$_{2}$SiO$_{4}$}\). Z Kristallogr. 1970;131:322–413.

    Article  CAS  Google Scholar 

  32. Tangeman J, Xirouchakis D. High-temperature heat capacity and thermodynamic properties for end-member titanite (\(\text{CaTiSiO$_{5}$}\)). Phys Chem Miner. 2001;28:167–76.

    Article  CAS  Google Scholar 

  33. Thiéblot L, Téqui C, Richet P. High-temperature heat capacity of grossular (\(\text{Ca}_{3}\text{Al}_{2}\text{Si}_{3}\text{O}_{12}\)), enstatite (\(\text{MgSiO}_{3}\)), and titanite (\(\text{CaTiSiO}_{5}\)). Am Mineral. 1999;84:848–55.

    Article  Google Scholar 

  34. Xirouchakis D, Kunz M, Parise JB, Lindsley DH. Synthesis methods and unit-cell volume of end-member titanite (\(\text{CaTiOSiO}_{4}\)). Am Mineral. 1997;82:748–53.

    Article  CAS  Google Scholar 

  35. Xirouchakis D, Fritsch S, Putnam RL, Navrotsky A, Lindsley DH. Thermochemistry and the enthalpy of formation of synthetic end-member (\(\text{CaTiSiO}_{5}\)) titanite. Am Mineral. 1997;82:754–9.

    Article  CAS  Google Scholar 

  36. Nerád I, Kosa L, Mikšíková E, Adamkovičová K. Enthalpic analysis of the \(\text{CaTiSiO}_{5}\) system. Chem Pap. 2006;60:274–8.

    Article  Google Scholar 

  37. Yamamoto S, Nonami T, Hase H, Kawamura N. Fundamental study on apatite precipitate ability of CaO–MgO–SiO2 compounders employed pseudo body solution of application for biomaterials. J Australas Ceram Soc. 2012;48:180–4.

    CAS  Google Scholar 

  38. Bozadjiev L, Doncheva L. Methods for diopside synthesis. J Univ Chem Tech Metall. 2006;41:125–8.

    CAS  Google Scholar 

  39. Charsley EL, Earnest CM, Gallagher PK, Richardson MJ. Preliminary round-robin studies on the ICTAC certified reference materials for DTA: barium carbonate and strontium carbonate. J Therm Anal. 1993;40:1415–22.

    Article  Google Scholar 

  40. McAdie HG. Requirements and realization of thermal analysis standards. Temperature standards for DTA. In: Wiedemann HG, editor. Thermal analysis—advances in instrumentation, vol. 1. Basel: Birkhäuser; 1972. p. 591–608.

    Google Scholar 

  41. Richardson MJ, Charsley EL. Calibration and standardisation in DSC. In: Brown ME, editor. Handbook of thermal analysis and calorimetry—principles and practice, vol. 1. Amsterdam: Elsevier; 1998. p. 547-75.

    Google Scholar 

  42. Zhong Z, Gallagher PK. Temperature calibration of simultaneous TG/DTA apparatus. Thermochim Acta. 1991;186:199–204.

    Article  CAS  Google Scholar 

  43. Kostyrko K, Skoczylas M. Temperature standard reference materials for thermal analysis. J Therm Anal. 1992;38:2181–8.

    Article  CAS  Google Scholar 

  44. Charsley EL, Hill JO, Nicholas P, Warrington SB. An investigation of the ICTA certified reference materials for DTA as potential standards for the temperature calibration of thermomechanical analysis equipment. Thermochim Acta. 1992;195:65–71.

    Article  CAS  Google Scholar 

  45. Janz GJ, Slowick JJ. Investigations of CsCl, \(\text{K}_{2}\text{SO}_{4}\), and \(\text{K}_{2}\text{CrO}_{4}\) as high temperature calibrants for differential scanning calorimetry. Z Anorg Allg Chem. 1990;586:166–74.

    Article  CAS  Google Scholar 

  46. Charsley EL, Laye PG, Richardson M. Feasibility study on the determination of accurate temperature values for the ICTA certified reference materials: potassium chromate. Thermochim Acta. 1993;216:331–4.

    Article  CAS  Google Scholar 

  47. Grønvold F, Stølen S, Svendsen SR. Heat capacity of \(\alpha\) quartz from 298.15 to 847.3 K, and of \(\beta\) quartz from 847.3 to 1000 K transition behaviour and revaluation of the thermodynamic. Thermochim Acta. 1989;139:225–43.

    Article  Google Scholar 

  48. Niesel K. The importance of the \(\alpha ^{\prime }_{L}\)\(\alpha ^{\prime }_{H}\) transition in the polymorphism of dicalcium silicate. Silic Ind. 1972;37:136–8.

    CAS  Google Scholar 

  49. Heimann RB. Classical and advanced ceramics: from fundamentals to applications. Weinheim: Wiley-VCH; 2010.

    Book  Google Scholar 

  50. Fellmuth B. Guide to the realization of ITS-90. Bureau International des Poids et Mesures - BIPM, Sèvres; 2015. http://www.bipm.org/en/committees/cc/cct/guide-its90.html.

  51. Rusby RL. The conversion of thermal reference values to the ITS-90. J Chem Thermodyn. 1991;23:1153–61.

    Article  CAS  Google Scholar 

  52. Douglas TB. Conversion of existing calorimetrically determined thermodynamic properties to the basis of the international practical temperature scale of 1968. J Res Natl Bur Stand. 1969;73A:451–70.

    Article  Google Scholar 

  53. Mares R, Kalova J. Thermophysical properties converted from data and equations based on old temperature scales. In: Span R, Weber I, editors. Water, steam, and aqueous solutions: advances in science and technology for power generation. Proceedings of the 15th international conference on the properties of water and steam. Düsseldorf: VDI/GET; 2008.

Download references

Acknowledgements

Authors acknowledge financial support from the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), through the “Pesquisador Visitante Especial” initiative—Grant No. 408677/2013-9, as well as research Grant Nos. 304831/2014-0 (CAP) and 304675/2015-6 (JEZ), Inmetro (Instituto Nacional de Metrologia, Qualidade e Tecnologia) and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), through the Rede de Laboratórios Associados ao Inmetro para Inovação e Competitividade (RELAI) initiative, and SDECT (Secretaria do Desenvolvimento Econômico, Ciência e Tecnologia do Estado do Rio Grande do Sul). Thanks are due also to Netzsch Gerätebau GmbH, Cynthia M. Gomes (formerly at Bundesanstalt für Materialforschung und prüfung—BAM, Germany), Alessandro Dalponte for his collaboration in the early stages of this work, and the IMC staff, mainly D. Golle for helping us with the many thermal analysis experiments and R. C. D. Cruz for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Zorzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorzi, J.E., Segadães, A.M. & Perottoni, C.A. Reference material for temperature calibration of differential scanning calorimeters above 1400 °C. J Therm Anal Calorim 128, 1547–1554 (2017). https://doi.org/10.1007/s10973-016-6048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6048-8

Keywords

Navigation