Skip to main content
Log in

Thermal stability and decomposition of urea, thiourea and selenourea analogous diselenide derivatives

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The fusion and thermal decomposition of thirty-three diselenide compounds with a urea, thiourea or selenourea group linked with different aliphatic or aromatic substituents have been studied by thermogravimetry, differential scanning calorimetry and mass spectrometry in order to perform comparative thermal stability studies among analogs. A relationship has been found between stability and a series of effects which occur in the compound structures. Analysis of the thermal data indicated that: (a) in general, compounds with a urea or selenourea group are more stable than those with a thiourea group; (b) no difference in stability exists when an aromatic or aliphatic group is linked to the thiourea group but when linked to the urea or selenourea groups, stability does differ; (c) selenourea compounds with aliphatic chain are the most unstable; and (d) the nature of the substituent located on the benzyl ring has no effects on thermal stability. Therefore, criteria for the selection of substituents can be established in order to improve the stability of these drugs. In addition, the mass spectral fragmentation in comparison with thermal analytical data helps in confirming the thermal behavior of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lever T, Hains P, Rouquerol J, Charsley EL, Eckeren PV, Burlett DJ. ICTAC nomenclature of thermal analysis (IUPAC) recommendations. Pure Appl Chem. 2014;86:545–53.

    Article  CAS  Google Scholar 

  2. Craig Duncan QM, Reading M. Thermal analysis of pharmaceuticals. Boca Raton: CRC Press; 2007.

    Google Scholar 

  3. Yoshida MI, Oliveira MA, Gomez ECL, Mussel WN, Castro WV, Soares CDV. Thermal characterization of lovastatin in pharmaceutical formulations. J Therm Anal Calorim. 2011;106:657–64.

    Article  CAS  Google Scholar 

  4. Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal. 2011;55:618–44.

    Article  CAS  Google Scholar 

  5. Amorim PHO, Ferreira APG, Machado LCM, Cervini P, Cavalheiro ETG. Investigation on the thermal behavior of beta-blockers antihypertensives atenolol and nadolol using TG/DTG, DTA, DSC, and TG–FTIR. J Therm Anal Calorim. 2015;120:1035–42.

    Article  CAS  Google Scholar 

  6. Neto HS, Novák C, Matos J. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J Therm Anal Calorim. 2009;97(1):367–74.

    Article  Google Scholar 

  7. Bannach G, Cervini P, Cavalheiro ETG, Ionashiro M. Using thermal and spectroscopic data to investigate the thermal behavior of epinephrine. Thermochim Acta. 2010;499:123–7.

    Article  CAS  Google Scholar 

  8. Bannach G, Arcaro R, Ferroni DC, Siqueira AB, Treu-Filho O, Ionashiro M, Schnitzler E. Thermoanalytical study of some antiinflammatory analgesic agents. J Therm Anal Calorim. 2010;102:163–70.

    Article  CAS  Google Scholar 

  9. Ambrozini B, Cervini P, Cavalheiro ETG. Thermal behavior of the beta-blocker propranolol. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-5118-7.

    Google Scholar 

  10. Silva ACM, Galico DA, Guerra RB, Legendre AO, Rinaldo D, Galhiane MS, Bannach G. Study of some volatile compounds evolved from the thermal decomposition of atenolol. J Therm Anal Calorim. 2014;115:2517–20.

    Article  CAS  Google Scholar 

  11. Correa JCR, Perissinato AG, Serra CHD, Trevisan MG, Salgado HRN. Polymorphic stability of darunavir and its formulation. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4984-3.

    Google Scholar 

  12. Owusu-Ware SK, Cherry AJ, Baltus CB, Spencer J, Antonijevic MD. Thermal analysis of novel biphenylamide derivatives. J Therm Anal Calorim. 2015;121:437–52.

    Article  CAS  Google Scholar 

  13. Silva PSP, Castro RAE, Melro E, Silva MR, Maria TMR, Canotilho J, Eusebio MES. Structural evidence of polymorphism and conformational isomorphism of a somewhat flexible molecule: m-anisic acid. J Therm Anal Calorim. 2015;120:667–77.

    Article  Google Scholar 

  14. Neto HS, Novak C, Matos JR. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J Therm Anal Calorim. 2009;97:367–74.

    Article  Google Scholar 

  15. Kumar N, Goindi S, Saini B, Bansal G. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J Therm Anal Calorim. 2014;115:2375–83.

    Article  CAS  Google Scholar 

  16. Lira AM, Araujo AAS, Basilio IDJ, Santos BLL, Santana DP, Macedo RO. Compatibility studies of lapachol with pharmaceutical excipients for the development of topical formulations. Thermochim Acta. 2007;457:1–6.

    Article  CAS  Google Scholar 

  17. de Souza SMM, Franco PIBEM, Leles MIG, da Conceicao EC. Evaluation of thermal stability of enalapril maleate tablets using thermogravimetry and differential scanning calorimetry. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4648-3.

    Google Scholar 

  18. da Silva EP, Pereira MAV, Lima IPD, Lima NGPB, Barbosa EG, Aragao CFS, Gomes APB. Compatibility study between atorvastatin and excipients using DSC and FTIR. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-015-5077-z.

    Google Scholar 

  19. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68:335–57.

    Article  CAS  Google Scholar 

  20. Giron D, Goldbronn C. Use of DSC and TG for identification and quantification of the dosage form. J Therm Anal Calorim. 1997;48:473–83.

    Article  CAS  Google Scholar 

  21. Etienne S, Becker C, Ruch D, Germain A, Calberg C. Synergetic effect of poly(vinyl butyral) and calcium carbonate on thermal stability of poly(vinyl chloride) nanocomposites investigated by TG–FTIR–MS. J Thermal Anal Calorim. 2010;100:667–77.

    Article  CAS  Google Scholar 

  22. Wiecinska P. Thermal degradation of organic additives used in colloidal shaping of ceramics investigated by the coupled DTA/TG/MS analysis. J Thermal Anal Calorim. 2015;. doi:10.1007/s10973-015-5075-1.

    Google Scholar 

  23. Izato Y, Miyake A. Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures. J Therm Anal Calorim. 2015;121:287–94.

    Article  CAS  Google Scholar 

  24. Zayed MA, Fahmey MA, El-Desawy M, Farrag YS. Structure characterization of terazosin drug using mass spectrometry and thermal analyses techniques in comparison with semi-empirical molecular orbital (MO) calculations. J Therm Anal Calorim. 2015;120:1061–9.

    Article  CAS  Google Scholar 

  25. Yılmaz N, Oz S, Atakol A, Svoboda I, Aydiner B, Akay MA, Atakol O. An experimental and theoretical study toward the synthesis, structure and thermal decomposition of some phenyl tetrazoles. J Therm Anal Calorim. 2015;119:2321–8.

    Article  Google Scholar 

  26. Zayed MA, El-Dien FAN, Hawash MF, Fahmey MA. Mass spectra of gliclazide drug at various ion sources temperature. J Therm Anal Calorim. 2010;102:305–12.

    Article  CAS  Google Scholar 

  27. Lizarraga E, Zabaleta C, Palop JA. Mechanism of thermal decomposition of thiourea derivatives. J Therm Anal Calorim. 2008;93:887–98.

    Article  CAS  Google Scholar 

  28. Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014;94(3):739–77.

    Article  CAS  Google Scholar 

  29. Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta. 2015;1850(8):1642–60.

    Article  CAS  Google Scholar 

  30. Nedel F, Campos VF, Alves D, McBride AJ, Dellagostin OA, Collares T, Savegnago L, Seixas FK. Substituted diaryl diselenides: cytotoxic and apoptotic effect in human colon adenocarcinoma cells. Life Sci. 2012;91(9–10):345–52.

    Article  CAS  Google Scholar 

  31. Plano D, Baquedano Y, Ibáñez E, Jiménez I, Palop JA, Spallholz JE, Sanmartín C. Antioxidant-prooxidant properties of a new organoselenium compound library. Molecules. 2010;15(10):7292–312.

    Article  CAS  Google Scholar 

  32. Romano B, Plano D, Encío I, Palop JA, Sanmartín C. In vitro radical scavenging and cytotoxic activities of novel hybrid selenocarbamates. Bioorg Med Chem. 2015;23(8):1716–27.

    Article  CAS  Google Scholar 

  33. Plano D, Baquedano Y, Moreno-Mateos D, Font M, Jiménez-Ruiz A, Palop JA, Sanmartín C. Selenocyanates and diselenides: a new class of potent antileishmanial agents. Eur J Med Chem. 2011;46(8):3315–23.

    Article  CAS  Google Scholar 

  34. Baquedano Y, Moreno E, Espuelas S, Nguewa P, Font M, Gutiérrez KJ, Jiménez-Ruiz A, Palop JA, Sanmartín C. Novel hybrid selenosulfonamides as potent antileishmanial agents. Eur J Med Chem. 2014;3(74):116–23.

    Article  Google Scholar 

  35. Chen JN, Wang XF, Li T, Wu DW, Fu XB, Zhang GJ, Shen XC. Wang; HS Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur J Med Chem. 2016;1(107):12–25.

    Article  Google Scholar 

  36. Wilking MJ, Singh C, Nihal M, Zhong W, Ahmad N. SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation. Arch Biochem Biophys. 2014;563:94–100.

    Article  CAS  Google Scholar 

  37. Liebman JF, Slayden SW. Thermochemistry of organoselenium and organotellurium compounds. In: Rappoport Z, editor. The chemistry of organic selenium and tellurium compounds, vol. 3. New York: Wiley; 2012. p. 139–65.

    Google Scholar 

  38. Patial BS, Thakur N, Tripathi SK. Crystallization study of Sn additive Se–Te chalcogenide alloys. J Therm Anal Calorim. 2011;106:845–52.

    Article  CAS  Google Scholar 

  39. Attanassov PK. Synthesis of 4-(phenylamino)quinazoline-2(1H)-selenoles and diselenides from isoselenocyanates. Helv Chim Acta. 2004;87:1873–87.

    Article  Google Scholar 

  40. Fahmey MA, Zayed MA, El-Shobak HG. Study of some phenolic-iodine redox polymeric products by thermal analyses and mass spectrometry. J Therm Anal Calorim. 2005;82:137–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Lizarraga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, M., Palop, J.A., Sanmartín, C. et al. Thermal stability and decomposition of urea, thiourea and selenourea analogous diselenide derivatives. J Therm Anal Calorim 127, 1663–1674 (2017). https://doi.org/10.1007/s10973-016-5645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5645-x

Keywords

Navigation