Skip to main content
Log in

Calorimetry and other methods in the studies of reactive magnesia–hydratable alumina–microsilica hydrating mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The reactivities of the binary and ternary mixtures of reactive magnesia (MgO≡M), hydratable alumina (Al2O3≡A) and microsilica (SiO2≡S) micropowders were investigated by calorimetric method and other analytical techniques (X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), differential thermal/thermogravimetric (DTA-TG) analysis and scanning electron microscope (SEM) observations). Effect of water/solid mass ratio and temperature on the hydration behavior of the M–A, M–A–S, M–S, A–M–S and A–S hydratable binders were established. The methodological considerations on both in situ and ex situ mixing techniques have also been taken. The initial mixing peak was due to wetting of the binder particles and initial dissolution reactions. A second, extensive heat peak was associated with the formation of crystalline and noncrystalline hydration products, i.e., brucite Mg(OH)2, magnesium aluminate hydrate (MAH; H≡H2O)-like phase, magnesium silicate hydrate (MSH)-like phase and magnesium aluminum silicate hydrate gels (MASH). Negligible heat was evolved during the hydration reaction of A–S mixture, and the second reaction peak was not observed. Nevertheless, the presence of Al2O3 and SiO2 in other combinations contributes to the consumption of Mg(OH)2 which was formed during the initial stages of hydration and leads to the formation of cementitious products, like M–A–H, M–S–H and M–A–S–H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pacewska B, Nowacka M, Antonovič V, Aleknevičius. Investigation of early hydration of high aluminate cement-based binder at different ambient temperatures. J Therm Anal Calorim. 2012;109:717–26.

    Article  CAS  Google Scholar 

  2. Pacewska B, Nowacka M. Studies of conversion progress of calcium aluminate cement hydrates by thermal analysis method. J Therm Anal Calorim. 2014;117:653–60.

    Article  CAS  Google Scholar 

  3. Singh VK. High-alumina refractory castables with calcium aluminate binder. J Mater Sci Lett. 1989;8:424–6.

    Article  CAS  Google Scholar 

  4. Obradović N, Terzić A, PavlovićLj Filipović S, Pavlović V. Dehydration investigations of a refractory concrete using DTA method. J Therm Anal Calorim. 2012;110(1):37–41.

    Article  Google Scholar 

  5. Sawków J, Nocuń-Wczelik W. Calorimetric studies of refractory corundum. Calcium aluminate composites. J Therm Anal Calorim. 2003;74:451–8.

    Article  Google Scholar 

  6. Sakai E, Sugiyama T, Saito T, Daimon M. Mechanical properties and micro-structures of calcium aluminate based ultra high strength cement. Cement Concrete Res. 2010;40(6):966–70.

    Article  CAS  Google Scholar 

  7. Silva AP, Segadães AM, Pinto DG, Oliveira LA, Devezas TC. Effect of particle size distribution and calcium aluminate cement on the rheological behaviour of all-alumina refractory castables. Powder Technol. 2012;226:107–13.

    Article  CAS  Google Scholar 

  8. Ukrainczyk N, Matusinović T. Thermal properties of hydrating calcium aluminate cement pastes. Cement Concrete Res. 2010;40:128–36.

    Article  CAS  Google Scholar 

  9. Das SK, Mitra A, Das Poddar PK. Thermal analysis of hydrated calcium aluminates. J Therm Anal. 1996;47:765–74.

    Article  CAS  Google Scholar 

  10. Da Luz AP, Braulio MAL, Pandolfelli VC. Refractory castable engineering. F.I.R.E. Compendium Series. Baden-Baden: Göller Verlag GmbH; 2015.

    Google Scholar 

  11. Azizian F. Improving the performances of cement-free castables. Ceram Ind. 1997;147(2):42–8.

    Google Scholar 

  12. Poddar DD, Mulkhopadhyay S. Spinel-bonded basic castables in relation to spinel formation agents. Inteceram. 2002;51(4):282–8.

    Google Scholar 

  13. Ye G, Troczynski T. Hydration of hydratable alumina in the presence of various forms of MgO. Ceram Int. 2006;32(3):257–62.

    Article  CAS  Google Scholar 

  14. Ye G, Troczynski T. Effect of magnesia on strength of hydratable alumina-bonded castable refractories. J Mater Sci. 2005;40:3921–6.

    Article  CAS  Google Scholar 

  15. Szczerba J, Prorok R, Śnieżek E, Madej D, Maślona K. Influence of time and temperature on ageing and phases synthesis in the MgO–SiO2–H2O system. Thermochim Acta. 2013;567:57–64.

    Article  CAS  Google Scholar 

  16. Li Z, Zhang T, Hu J, Tang Y, Niu Y, Wei J, Yu Q. Characterization of reaction products and reaction process of MgO–SiO2–H2O system at room temperature. Constr Build Mater. 2014;61:252–9.

    Article  Google Scholar 

  17. Nied D, Enemark-Rasmussen K, L’Hopital E, Skibsted J, Lothenbach B. Properties of magnesium silicate hydrates (M–S–H). Cement Concrete Res. 2016;79:323–32.

    Article  CAS  Google Scholar 

  18. Ma W, Brown PW. Mechanisms of reaction of hydratable aluminas. J Am CeramSoc. 1999;82(2):453–6.

    Article  CAS  Google Scholar 

  19. Sako EY, Braulio MAL, Zinngrebe E, Van der Laan SR, Pandolfelli VC. Fundamentals and applications on in situ spinel formation mechanisms in Al2O3–MgO refractory castables. Ceram Int. 2012;38:2243–51.

    Article  CAS  Google Scholar 

  20. Zhang T, Vandeperre LJ, Cheeseman CR. Formation of magnesium silicate hydrate (M–S–H) cement pastes using sodium hexametaphosphate. Cement Concrete Res. 2014;65:8–14.

    Article  CAS  Google Scholar 

  21. ICDD PDF-2 database product.

  22. Miller A, Wilkins CH. Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem. 1952;24:1253–94.

    Article  CAS  Google Scholar 

  23. Zhang Z, Zheng Y, Ni Y, Liu Z, Chen J, Liang X. Temperature- and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates. J Phys Chem B. 2006;110:12969–73.

    Article  CAS  Google Scholar 

  24. Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong X. Structure of calcium silicate hydrate (C–S–H): near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc. 1999;82:742–8.

    Article  CAS  Google Scholar 

  25. Tarte P. Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4tetrahedra and AlO6 octahedra. Spectrochim Acta A Mol Spectrosc. 1967;23(7):2127–43.

    Article  CAS  Google Scholar 

  26. Hanna R. Infrared properties of magnesium oxide. J Am Ceram Soc. 1965;48(7):376–80.

    Article  CAS  Google Scholar 

  27. Frost RL, Kloprogge JT. Infrared emission spectroscopic study of brucite. Spectrochim Acta A. 1999;55:2195–202.

    Article  Google Scholar 

Download references

Acknowledgements

The research was performed at Faculty of Materials Science and Ceramics of AGH within the confines of the project no 11.11.160.617. The authors thank TA Instruments company for microcalorimetric measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominika Madej.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madej, D., Ortmann, C., Szczerba, J. et al. Calorimetry and other methods in the studies of reactive magnesia–hydratable alumina–microsilica hydrating mixtures. J Therm Anal Calorim 126, 1133–1142 (2016). https://doi.org/10.1007/s10973-016-5634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5634-0

Keywords

Navigation