Skip to main content
Log in

Effect of the ambient pressure on the heat release rates of n-heptane pool fires

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To investigate the influence of low air pressure on the heat release rate, two groups of the configured experiments on n-heptane pool fires were conducted with burners of three sizes (D = 0.3, 0.35, 0.4 m) in Hefei (99.8 kPa) and Lhasa (66.5 kPa), respectively. The unified standard calculation method confirmed in ISO 9705 was adjusted by introducing the effect of the ambient air pressure. The experimental results indicate that the effect of pressure on the burning rate seems very weak in the case of the thin layer pool fires. However, the heat release rates increase a little at the higher altitude, which may be due to the less soot yield under the lower pressure. The combustion efficiency X a and the convective heat fraction X c rises a little with the decreasing pressure, while the radiative fraction X r shows independent on pressure. The smoke temperature is a little higher at the higher altitude due to the stretching flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babrauskas V, Peacock RD. Heat release rate: the single most important variable in fire hazard. Fire Saf J. 1992;18(3):255–72. doi:10.1016/0379-7112(92)90019-9.

    Article  CAS  Google Scholar 

  2. Corner ISO Room. International standard-fire tests-full-scale room test for surface products. Geneva: International Organisation for Standardisation; 1993.

  3. Reinhardt JW. Minimum performance standard for aircraft cargo compartment Halon replacement fire suppression systems. US Department of Transportation, Federal Aviation Administration, Office of Aviation Research; 2003.

  4. Niu Y, He Y, Hu X, Zhou D, Lin CH, Yin J, et al. Experimental study of burning rates of cardboard box fires near sea level and at high altitude. Proc Combust Inst. 2012;34(2):2565–73. doi:10.1016/j.proci.2012.07.041.

    Article  Google Scholar 

  5. Yao W, Hu X, Rong J, Wang J, Zhang H. Experimental study of large-scale fire behavior under low pressure at high altitude. J Fire Sci. 2013. doi:10.1177/0734904113481326.

    Google Scholar 

  6. Blinov V, Khudyakov G. Diffusion burning of liquids (No. AERDL-T-1490-A). Virigina: Army Engineer Research and Development Labs, Fort Belvoir; 1961.

  7. Hall A. Pool burning: a review (No. AD-781347/0; RPE-TR-72/11; DRIC-BR-40240). Rocket Propulsion Establishment, Westcott (UK); 1972.

  8. Yin JS, Yao W, Liu QY, Zhou ZH, Wu N, Zhang H, et al. Experimental study of n-heptane pool fire behavior in an altitude chamber. Int J Heat Mass Transf. 2013;62(1):543–52. doi:10.1016/j.ijheatmasstransfer.2013.02.072.

    Article  CAS  Google Scholar 

  9. Thornton W. The relation of oxygen to the heat of combustion of organic compounds. Philos Mag Ser 6; 1917.

  10. Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4(2):61–5. doi:10.1002/fam.810040202.

    Article  CAS  Google Scholar 

  11. Parker WJ. Calculations of the heat release rate by oxygen consumption for various applications. J Fire Sci. 1984;2(5):380–95. doi:10.1177/073490418400200505.

    Article  CAS  Google Scholar 

  12. DiNenno PJ. SFPE handbook of fire protection engineering. Quincy, Massachusetts: National Fire Protection Association; 2002.

  13. An W, Jiang L, Sun J, Liew KM. Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. J Therm Anal Calorim. 2014;119(1):229–38. doi:10.1007/s10973-014-4165-9.

    Article  Google Scholar 

  14. Martinka J, Chrebet T, Balog K. An assessment of petrol fire risk by oxygen consumption calorimetry. J Therm Anal Calorim. 2014;117(1):325–32. doi:10.1007/s10973-014-3686-6.

    Article  CAS  Google Scholar 

  15. McCaffrey BJ, Heskestad G. Robust bidirectional low-velocity probe for flame and fire application. Combust Flame. 1976;26(1):125–7. doi:10.1016/0010-2180(76)90062-6.

    Article  Google Scholar 

  16. Zhou Z, Wei Y, Li H, Lin C-H, Yin J, Wu T et al. Experimental study on Jet-A pool fire at high altitude. In: 11th International symposium on fire safety science; 2014.

  17. Reichmuth A, Wunderli S, Weber M, Meyer RV. The uncertainty of weighing data obtained with electronic analytical balances. Microchim Acta. 2004;148(3):133–41. doi:10.1007/s00604-004-0278-3.

    Article  CAS  Google Scholar 

  18. Salahinejad M, Aflaki F. Uncertainty measurement of weighing results from an electronic analytical balance. Meas Sci Rev. 2007;7(6):67–75.

    Google Scholar 

  19. Kang Q, Lu S, Chen B. Experimental study on burning rate of small scale heptane pool fires. Chin Sci Bull. 2010;55(10):973–9. doi:10.1007/s11434-009-0741-y.

    Article  CAS  Google Scholar 

  20. Koseki H, Mulholland GW. The effect of diameter on the burning of crude oil pool fires. Fire Technol. 1991;27(1):54–65. doi:10.1007/BF01039527.

    Article  Google Scholar 

  21. Tu R, Fang J, Zhang YM, Zhang J, Zeng Y. Effects of low air pressure on radiation-controlled rectangular ethanol and n-heptane pool fires. Proc Combust Inst. 2012;34(2):2591–8. doi:10.1016/j.proci.2012.06.036.

    Article  Google Scholar 

  22. Zhou Z, Wei Y, Li H, Yuen R, Jian W. Experimental analysis of low air pressure influences on fire plumes. Int J Heat Mass Transf. 2014;70:578–85. doi:10.1016/j.ijheatmasstransfer.2013.11.042.

    Article  CAS  Google Scholar 

  23. Fang J, Yu C, Tu R, Qiao L, Zhang Y, Wang J. The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires. J Hazard Mater. 2008;154(1):476–83. doi:10.1016/j.jhazmat.2007.10.058.

    CAS  Google Scholar 

  24. Fang J, Tu R, Guan J, Wang J, Zhang Y. Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires. Fuel. 2011;90(8):2760–6. doi:10.1016/j.fuel.2011.03.035.

    Article  CAS  Google Scholar 

  25. Tewarson A, Lee JL, Pion RF. The influence of oxygen concentration on fuel parameters for fire modeling. In: Symposium (international) on combustion, vol. 18(1); 1981, p. 563–70. doi:10.1016/s0082-0784(81)80061-6.

  26. Most JM, Mandin P, Chen J, Joulain P, Durox D, Fernandez-Pello AC. Influence of gravity and pressure on pool fire-type diffusion flames. Proc Combust Inst. 1996;26(1):1311–7. doi:10.1016/S0082-0784(96)80349-3.

    Article  Google Scholar 

  27. Wieser D, Jauch P, Willi U. The influence of high altitude on fire detector test fires. Fire Saf J. 1997;29(2):195–204. doi:10.1016/S0379-7112(96)00042-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NFPC Grant No. 51376172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Wang, J., Liu, J. et al. Effect of the ambient pressure on the heat release rates of n-heptane pool fires. J Therm Anal Calorim 126, 1727–1734 (2016). https://doi.org/10.1007/s10973-016-5620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5620-6

Keywords

Navigation