Skip to main content
Log in

Numerical hydrothermal analysis of water-Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties

Application to cylindrical heat pipes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A study on the flow and heat transfer characteristics of nanofluid forced convection in an annular porous medium, as the main part of a cylindrical heat pipe, is numerically carried out to investigate the effect of nanoparticles on hydrothermal performance of a cylindrical heat pipe. The Al2O3-water mixture is considered as working fluid and a single-phase approach with variable properties adopted to formulate it. The influence of heat load and particle concentration level on thermophysical properties, velocity, pressure, and temperature fields, thermal performance of heat pipe is evaluated. It is found that the use of nanoparticles presents a better wall temperature uniformity. The values of velocity in wick structure decreases as more nanoparticles are added in base fluid. The profiles of pressure drop for low and middle particle concentration levels are nearly similar to each other, while the pressure drop increases significantly as concentration is raised up to 6 %. Both evaporation heat transfer coefficient and overall heat transfer coefficient improve as base fluid is replaced by nanofluid and the influence of the use of nanofluid on heat transfer enhancement becomes more remarkable for higher heat load. Results also revealed that the hydrothermal characteristics of heat pipe are more affected by nanoparticles as porosity and thermal conductivity ratio of porous medium increases and decreases, respectively. In addition, the thermal–hydraulic performance of heat pipe is investigated and the best value is found for the middle particle concentration and highest imposed heat load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

C f :

Forchheimer coefficient

c p :

Specific heat (J kg−1 K−1)

d :

Diameter (m)

d wire :

Diameter of wire in wick structure (m)

h e :

Average evaporation heat transfer coefficient (W m−2 K−1)

h fg :

Latent heat of evaporation (J Kg−1)

k :

Thermal conductivity (W m−1 K−1)

K :

Wick permeability (m2)

k b :

Boltzmann’s constant

k eff :

Effective thermal conductivity in wick structure (W m−1 K−1)

M :

Molecule weight of the base fluid (Kg mol−1)

N :

Number of mesh in wick structure (m−1), Avogadro Number

p :

Pressure (N m−2)

Pr:

Prandtl number of the base fluid

q″:

Heat flux (W m−2)

Q :

Heat load (W)

r :

Coordinate system

R :

Radius (m), thermal resistance (K W−1)

Re :

Reynolds number of nanoparticle

T :

Temperature (K)

T fr :

Freezing point of the base fluid (K)

\({\varvec{V}}\) :

Velocity vector (m s−1)

x :

Coordinate system

ɛ :

Porosity

η :

Thermal–hydraulic parameter

μ :

Dynamic viscosity(N m−2 s)

ρ :

Density (Kg m−3)

φ :

Nanoparticle volume fraction

ave:

Average

bf:

Base fluid

c :

Condenser

e :

Evaporator

nf:

Nanofluid

o :

Outer

p :

Particle

r :

Relative or ratio

s :

Solid matrix in wick structure

v :

Vapor

w :

Wick–wall interface

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Proc ASME Int Mech Eng Congr Expo San Francisco, USA. 1995;66:99–105.

    Google Scholar 

  2. Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.

    Article  Google Scholar 

  3. Esfe MH, Saedodin S, Toghraie D, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117:675–81.

    Article  Google Scholar 

  4. Barbes B, Paramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115:1883–91.

    Article  CAS  Google Scholar 

  5. Esfe MH, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120:1145–9.

    Article  Google Scholar 

  6. Esfe MH, Saedodin S, Asadi A, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Article  Google Scholar 

  7. Shafahi M, Vincenzo B, Vafai K, Manca M. An investigation of thermal performance of cylindrical heat pipes using nanofluids. Int J Heat Mass Transf. 2010;53:376–83.

    Article  CAS  Google Scholar 

  8. Shafahi M, Bianco B, Vafai K, Manca M. Thermal performance of flat-shaped heat pipe using nanofluids. Int J Heat Mass Transf. 2010;53:1438–45.

    Article  CAS  Google Scholar 

  9. Alizad K, Shafahi M, Vafai K, Manca M. Thermal performance and operational attributes of startup characteristics of flat-shaped heat pipes using nanofluids. Int J Heat Mass Transf. 2012;55:140–55.

    Article  CAS  Google Scholar 

  10. Solomon AB, Ramachandran K, Asirvatham LG, Pillai BC. Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid. Int J Heat Mass Transf. 2014;75:523–33.

    Article  CAS  Google Scholar 

  11. Solomon AB, Ramachandran K, Pillai BC. Thermal performance of heat pipe with nanoparticles coated wick. Appl Therm Eng. 2012;36:106–12.

    Article  CAS  Google Scholar 

  12. Shukla KN, Solomon AB, Pillai BC, Ibrahim M. Thermal performance of cylindrical heat pipes using nanofluids. J Thermophys Heat Transf. 2010;24:796–802.

    Article  CAS  Google Scholar 

  13. Asirvatham LG, Nimmagadda R, Wongwises S. Heat transfer performance of screen mesh wick heat pipes using silver-water nanofluid. Int J Heat Mass Transf. 2013;60:201–9.

    Article  CAS  Google Scholar 

  14. Liu ZH, Zhu QZ. Application of aqueous nanofluids in a horizontal mesh heat pipe. Energy Convers Manag. 2011;52:292–300.

    Article  CAS  Google Scholar 

  15. Chen YJ, Wang PY, Liu ZH, Li YT. Heat transfer characteristics of a new type of copper wire-bonded flat heat pipe using nanofluids. Int J Heat Mass Transf. 2013;67:548–59.

    Article  CAS  Google Scholar 

  16. Tsai CY, Chien HT, Ding PP, Chan B, Luh TY, Chen PH. Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater Lett. 2004;58:1461–5.

    Article  CAS  Google Scholar 

  17. Kumaresan G, Venkatachalapathy G, Asirvatham LG. Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. Int J Heat Mass Transf. 2014;72:507–16.

    Article  CAS  Google Scholar 

  18. Kumaresan G, Venkatachalapathy G, Asirvatham LG, Wongwises S. Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. Int Commun Heat Mass Transf. 2014;57:208–15.

    Article  CAS  Google Scholar 

  19. Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS, Muhammed M. Thermal performance of screen mesh heat pipe with Al2O3nanofluid. Eep Therm Fluid Sci. 2015;66:213–20.

    Article  CAS  Google Scholar 

  20. Menlik T, Sozen T, Gürü M. Oztas S¸Heat transfer enhancement using MgO/water nanofluid in heat pipe. J Energy Inst. 2015;88:247–57.

    Article  CAS  Google Scholar 

  21. Mashaei PR, Shahryari M. Effect of nanofluid on thermal performance of heat pipe with two evaporators; application to satellite equipment cooling. Acta Astronaut. 2015;111:345–55.

    Article  CAS  Google Scholar 

  22. Mashaei PR, Shahryari M, Fazeli H, Hosseinalipour SM. Numerical simulation of nanofluid application in a horizontal mesh heat pipe with multiple heat sources: a smart fluid for high efficiency thermal system. Appl Therm Eng. 2016;100:1016–30.

    Article  CAS  Google Scholar 

  23. Chien HT, Tsai CT, Chen PH, Chen PY. Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluids. In: Proceedings of the 5th international conference on electronic packaging technology, IEEE, Shanghai, China; 2003. p. 389–91.

  24. Liu ZH, Lu L. Thermal performance of axially micro grooved heat pipe using carbon nanotube suspensions. J Thermophys Heat Transf. 2009;23:170–5.

    Article  CAS  Google Scholar 

  25. Do KH, Jang SP. Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transf. 2010;53:2183–92.

    Article  CAS  Google Scholar 

  26. Yang XF, Liu ZH, Zhao J. Heat transfer performance of a horizontal micro grooved heat pipe using CuO nanofluids. J Micromech Microeng. 2008;18:35–8.

    Google Scholar 

  27. Wei WC, Tsai SH, Yang SY, Kang SW. Effect of nanofluids concentration on heat pipe thermal performance. IASME Trans. 2005;2:1432–9.

    Google Scholar 

  28. Asmaei L, Haghshenasfard M, Mehrabani-Zeinabad A, Esfahani MN. Thermal performance analysis of nanofluids in a thermosyphon heat pipe using CFD modeling. Heat Mass Transf. 2013;49:667–78.

    Article  Google Scholar 

  29. Lu L, Liu Z, Xiao H. H, Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors, part 1: indoor experiment. Sol Energy. 2011;85:379–87.

    Article  CAS  Google Scholar 

  30. Liu ZH, Yang XF, Guo GL. Effect of nanoparticles in nanofluid on thermal performance in a miniature thermosyphon. J Appl Phys. 2011;102:013526–34.

    Article  Google Scholar 

  31. Khandekar S, Joshi MY, Mehta B. Thermal performance of closed two-phase thermosyphon using nanofluids. Int J Therm Sci. 2008;47:659–67.

    Article  CAS  Google Scholar 

  32. Heris SZ, Mohammadpur F, Mahian M, Sahin AZ. Experimental study of two phase closed thermosyphon using cuo/water nanofluid in the presence of electric field. Exp Heat Transf. 2014;28:328–43.

    Article  Google Scholar 

  33. Alawi OA, Sidik NAC, Mohammed HA, Syahrullail S. Fluid flow and heat transfer characteristics of nanofluids in heat pipes: a review. Int Commun Heat Mass Transf. 2014;56:50–63.

    Article  CAS  Google Scholar 

  34. Sureshkumar R, Tharves Mohideen S, Nethaji N. Heat transfer characteristics of nanofluids in heat pipes: a review. Renew Sustain Energy Rev. 2013;20:397–410.

    Article  CAS  Google Scholar 

  35. Liu ZH, Li YY. A new frontier of nanofluid research-application of nanofluids in heat pipes. Int J Heat Mass Transf. 2012;55:6786–97.

    Article  CAS  Google Scholar 

  36. Maghrebi M, Nazari M, Armaghani T. Forced convection heat transfer of nanofluids in a porous channel. Transp Porous Media. 2012;93:401–13.

    Article  CAS  Google Scholar 

  37. Nielda DA, Kuznetsovb AV. Forced convection in a parallel-plate channel occupied by a nanofluid or a porous medium saturated by a nanofluid. Int J Heat Mass Transf. 2014;70:430–3.

    Article  Google Scholar 

  38. Sheremeta MA, Pop I. Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2014;79:137–45.

    Article  Google Scholar 

  39. Thama L, Nazarb R, Pop I. Mixed convection flow from a horizontal circular cylinder embedded in a porous medium filled by a nanofluid: buongiorno-Darcy model. Int J Heat Mass Transf. 2014;84:21–3.

    Google Scholar 

  40. Ting TW, Hung YM, Guo N. Viscous dissipative forced convection in thermal non-equilibrium nanofluid-saturated porous media embedded in microchannels. Int Commun Heat Mass Transf. 2014;57:309–18.

    Article  Google Scholar 

  41. Mashaei PR, Hosseinalipour SM. A numerical study of nanofluid forced convection in a porous channel with discrete heat sources. J Porous Media. 2014;17:549–61.

    Article  CAS  Google Scholar 

  42. Hajipour M, Dehkordi A. Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium. Int J Therm Sci. 2012;55:103–30.

    Article  CAS  Google Scholar 

  43. Hajipour M, Dehkordi A. Mixed-convection flow of Al2O3–H2O nanofluid in a channel partially filled with porous metal foam: experimental and numerical study. Exp Therm Fluid Sci. 2014;53:49–56.

    Article  CAS  Google Scholar 

  44. Ghazvini M, Shokouhmand H. Investigation of ananofluid-cooled micro- channel heat sink using fin and porous media approaches. Energy Convers Manag. 2009;50:2373–80.

    Article  CAS  Google Scholar 

  45. Servati AV, Javaherdeh K, Ashorynejad HR. Magnetic field effects on force convection flow of ananofluid in a channel partially filled with porous media using Lattice Boltzmann method. Adv Powder Technol. 2014;25:666–75.

    Article  Google Scholar 

  46. AbedMahdi R, Mohammedc HA, Munisamy KM, Saeid NH. Review of convection heat transfer and fluid flow in porous media with nanofluid. Renew Sustain Energy Rev. 2015;41:715–34.

    Article  Google Scholar 

  47. Kaya T, Goldak J. Three-dimensional numerical analysis of heat and mass transfer in heat pipes. Heat Mass Transf. 2007;43:775–85.

    Article  Google Scholar 

  48. Zhu N, Vafai K. Analysis of cylindrical heat pipes incorporating the effects of liquid-vapor coupling and non Darcian transport-a closed form solution. Int J Heat Mass Transf. 1999;42:3405–18.

    Article  CAS  Google Scholar 

  49. Tournier JM, El-Genk MS. A heat pipe transient analysis model. Int J Heat Mass Transf. 1994;37:753–62.

    Article  Google Scholar 

  50. Layeghi M, Nouri-Borujerdi A. Vapor flow analysis in partially-heated concentric annular heat pipes. Int J Com Eng Sci. 2004;15:235–44.

    Article  Google Scholar 

  51. Putra N, Septiadi WN, Rahman H, Irwansyah R. Thermal performance of screen mesh wick heat pipes with nanofluids. Exp Therm Fluid Sci. 2012;40:10–7.

    Article  CAS  Google Scholar 

  52. Park JH. A study on thermal performance of heat pipe for optimal placement of satellite equipment. ETRI J. 1997;19:59–69.

    Article  Google Scholar 

  53. Sarafraz MM, Hormozi F. Experimental study on the thermal performance and efficiency of a copper made thermosyphon heat pipe charged with alumina–glycol based nanofluids. Powder Technol. 2014;266:378–87.

    Article  CAS  Google Scholar 

  54. Chi SW. Heat pipe theory and practice. Washington: Hemisphere; 1976.

    Google Scholar 

  55. Das SK, Choi SU, Yu W, Pradeep T. Nanofluids: science and technology. Hoboken: Wiley; 2007.

    Book  Google Scholar 

  56. Fox RW, McDonald AT, Prtitchard PJ. Introduction to fluid mechanics. 6th ed. New York: Wiely; 2004.

    Google Scholar 

  57. Abu-Nada E. Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection. Int J Heat Fluid Flow. 2009;30:679–90.

    Article  CAS  Google Scholar 

  58. Xuan Y, Li Q, Zhang X, Fujii M. Stochastic thermal transport of nanoparticle suspensions. J Appl Phys. 2006;100:043507.

    Article  Google Scholar 

  59. Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys. 2009;42:055501.

    Article  Google Scholar 

  60. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei. 1993;4:227–33.

    Article  Google Scholar 

  61. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  62. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121:280–9.

    Article  CAS  Google Scholar 

  63. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.

    Article  CAS  Google Scholar 

  64. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567–74.

    Article  CAS  Google Scholar 

  65. Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:153107.

    Article  Google Scholar 

  66. Chon CH, Kihm KD. Thermal conductivity enhancement of nanofluids by Brownian motion. J Heat Transf. 2005;127:810.

    Article  Google Scholar 

  67. Murshed SMS, Leong KC, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 2008;47:560–8.

    Article  CAS  Google Scholar 

  68. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.

    Article  CAS  Google Scholar 

  69. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci. 2009;33:706–14.

    Article  CAS  Google Scholar 

  70. Corcion M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;30:789–93.

    Article  Google Scholar 

  71. Andrianova IS, Samoilove OY, Fisher IZ. Thermal conductivity and structure of water. J Struct Chem. 1967;8:736–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Mashaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashaei, P.R., Shahryari, M. & Madani, S. Numerical hydrothermal analysis of water-Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. J Therm Anal Calorim 126, 891–904 (2016). https://doi.org/10.1007/s10973-016-5550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5550-3

Keywords

Navigation