Skip to main content
Log in

Production of ultra-high molecular weight polyethylene-granite composite films by gelation/crystallization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study reports on film of ultra-high molecular weight polyethylene (UHMWPE) containing 1 mass% granite composite produced by gelation/crystallization technique at 150 °C from decalin solution. The morphology of UHMWPE-granite composite film was determined by using optical and scanning electron microscope, differential scanning calorimetry and Raman. Uniform dispersion of granite particles within ultra-high molecular weight polyethylene solution was the first step to achieve ultra-high molecular weight polyethylene-granite sheet samples with excellent properties. In differential scanning calorimetry analysis 50.1 % crystallinity of ultra-high molecular weight polyethylene-1 mass% granite composite was calculated from the endothermic peak area occurred around 142 °C which correspond to melting point of composite. Mechanical property of ultra-high molecular weight polyethylene-1 mass% granite composite was tested with tensile test and shown to possess unique properties, in particular an increase of over 2.5 times in Young’s modulus in comparison with pure ultra-high molecular weight polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chukov DI, Stepashkin AA, Maksimkin AV, Tcherdyntsev VV, Kaloshkin SD, Kuskov KV, Bugakov VI. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos B. 2015;76:79–88.

    Article  CAS  Google Scholar 

  2. Samad MA, Sinha SK. Mechanical, thermal and tribological characterization of a UHMWPE film reinforced with carbon nanotubes coated on steel. Tribol Int. 2011;44:1932–41.

    Article  Google Scholar 

  3. Minn M, Sinha SK. DLC and UHMWPE as hard/soft composite film on Si for improved tribological performance. Surf Coat Technol. 2008;202:3698–708.

    Article  CAS  Google Scholar 

  4. Valenzaa A, Viscoa AM, Torrisib L, Campo N. Characterization of ultra-high-molecular-weight polyethylene (UHMWPE) modified by ion implantation. Polymer. 2004;45:1707–15.

    Article  Google Scholar 

  5. Kurtz SM. The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement. 3rd ed. Oxford: Elsevier Academic Press; 2016.

  6. Urkaç S. Characterization of ultra high molecular weight polyethylene (UHMWPE) modified by metal-gas hybrid ion implantation technique. Thesis of Master, Engineering and Sciences of Izmir Institute of Technology. Izmir, 2006

  7. Changa BP, Akila HM, Nasirb RM. Mechanical and tribological properties of Zeolite-reinforced UHMWPE composite for implant application. Procedia Eng. 2013;68:88–94.

    Article  Google Scholar 

  8. Cohen Y, Rein DM, Vaykhansky L. A novel composite based on ultra-highmolecular-weight polyethylene. Compos Sci Technol. 1997;57:1149–54.

    Article  CAS  Google Scholar 

  9. Valenzaa A, Viscoa AM, Torrisib L, Campo N. Characterization of ultra-high-molecular-weight polyethylene (UHMWPE) modified by ion implantation. Polymer. 2004;45:1707–15.

    Article  Google Scholar 

  10. Reggiani M, Tinti A, Taddei P, Visentin M, Stea S, Clerico M, Fagnano C. Phase transformation in explanted highly crystalline UHMWPE acetabular cups and debris after in vivo wear. J Mol Struct. 2006;785:98–105.

    Article  CAS  Google Scholar 

  11. Liu J-L, Zhu Y, Wang Q, Ge S. Biotribological behavior of ultra high molecular weight polyethylene composites containing bovine bone hydroxyapatite. J China Univ Min Technol. 2008;18:0606–12.

    Article  CAS  Google Scholar 

  12. Chen Y, Qi Y, Tai Z, Yan X, Zhu F, Xue Q. Preparation, mechanical properties and biocompatibility of grapheme oxide/ultrahigh molecular weight polyethylene composites. Eur Polym J. 2012;48:1026–33.

    Article  CAS  Google Scholar 

  13. Aoike T, Yokoyama D, Uehara H, Yamanobe T, Komoto T. Tribology of ultra-high molecular weight polyethylene disks molded at different temperatures. Wear. 2007;262:742–8.

    Article  CAS  Google Scholar 

  14. Wang Q, Liu J, Ge S. Study on biotribological behavior of the combined joint of CoCrMo and UHMWPE/BHA composite in a hip joint simulator. J Bionic Eng. 2009;6:378–86.

    Article  Google Scholar 

  15. Black J, Hastings G. Handbook of biomaterial properties. London: Chapman & Hall; 1998.

  16. Guofang G, Huayong Y, Xin F. Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding. Wear. 2004;256:88–94.

    Article  Google Scholar 

  17. Naira LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  Google Scholar 

  18. Guofang G, Huayong Y, Xin F. Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding. Wear. 2004;256:88–94.

    Article  Google Scholar 

  19. Naira LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  Google Scholar 

  20. Ramakrishna S, Mayer J, Wintermanter E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61:1189–224.

    Article  CAS  Google Scholar 

  21. Chang BP, Akil HM, Nasir RBM. Comparative study of micro- and nano-ZnO reinforced UHMWPE composites under dry sliding wear. Wear. 2013;297:1120–7.

    Article  CAS  Google Scholar 

  22. Liu JL, Zhu YY, Wang QL, Ge SR. Biotribological behavior of ultra high molecular weight polyethylene composites containing bovine bone hydroxyapatite. J China Univ Min Technol. 2008;18:0606–12.

    Article  CAS  Google Scholar 

  23. Fanga L, Lenga Y, Gao P. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications. Biomaterials. 2005;26:3471–8.

    Article  Google Scholar 

  24. Tong J, Maa Y, Jiang M. Effects of the wollastonite fiber modification on the sliding wear behavior of the UHMWPE composites. Wear. 2003;255:734–41.

    Article  CAS  Google Scholar 

  25. Rout A, Satapathy A, Mantry S, Sahoo A, Mohanty T. Erosion wear performance analysis of polyester-gf-granite hybrid composites using the Taguchi method. Procedia Eng. 2012;38:1863–82.

    Article  CAS  Google Scholar 

  26. http://en.wikipedia.org/wiki/Granite.

  27. Isaji S, Bin Y, Matsuo M. Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer. 2009;50:1046–53.

    Article  CAS  Google Scholar 

  28. Chukov DI, Stepashkin A, Maksimkin AV, Tcherdyntsev VV, Kaloshkin SD, Kuskov KV, Bugakov VI. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos B. 2015;76:79–88.

    Article  CAS  Google Scholar 

  29. Mee R. High-speed spinning of ultra-high molecular weight polyethylene fibres. Phd Thesis, University of Groningen. 1991:70.

  30. Bin Y, Ma L, Adachi R, Kurosu H, Matsuo M. Ultra-drawing of low molecular weight polyethylene-ultra-high molecular weight polyethylene blend films prepared by gelation/crystallization from semi-dilute solutions. Polymer. 2001;42:8125–35.

  31. Rein DM, Cohen Y, Zussman E. Preparation of ultra-high molecular weight polyethylene fibers. Electrospun with carbon nanotubes. 17th international conference on composite materials. Edinburgh International Convention Centre (EICC). Edinburgh, UK. Jul 2009.

  32. Pezzotti G, Kumakura T, Yamada K, Tateiwa T, Puppulin L, Zhu W, Yamamoto K. Confocal Raman spectroscopic analysis of cross-linked ultra-high molecular weight polyethylene for application in artificial hip joints. J Biomed Opt. 2007;. doi:10.1117/1.2710247.

    Google Scholar 

  33. Parasnis NC, Ramani K. Non-isothermal crystallization of UHMWPE. J Therm Anal Calorim. 1999;55:709–19.

    Article  CAS  Google Scholar 

  34. Kong Y, Hay JN. The measurement of the crystallinity of polymers by DSC. Polymer. 2002;43:3873–8.

    Article  CAS  Google Scholar 

  35. Krevelen DW, Nijenhuis K, Properties of polymers. Amsterdam: Elsevier; 2009. p. 383–385.

  36. http://www.crownplastics.com/wp-content/uploads/2010/08/UHMW-MechanProp.pdf.

  37. http://www.uhmwpe.unito.it/2003/Kurtz.pdf.

Download references

Acknowledgements

The authors express their thanks to Texas A&M University, Department of Metallurgy and Materials Engineering, for giving opportunity for performing experimental studies. This work was conducted under a 2219 postdoctoral research program supported by Scientific and Technological Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gozde Celebi Efe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efe, G.C., Ozaydin, F., Ucisik, H. et al. Production of ultra-high molecular weight polyethylene-granite composite films by gelation/crystallization. J Therm Anal Calorim 125, 659–665 (2016). https://doi.org/10.1007/s10973-016-5466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5466-y

Keywords

Navigation