Skip to main content
Log in

The kinetics of crystallization of poly(ε-caprolactone) measured by FTIR spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics of crystallization of poly(ε-caprolactone), PCL, have been measured by FTIR spectroscopy using the absorbance of the crystalline and amorphous phase carbonyl bands at 1725 and 1735 cm−1, respectively, to determine the fractional crystallinity as a function of time and over the temperature range 43–47 °C. A comparison was also made with DSC which was found to have limited sensitivity such that it could only measure the primary stage of the crystallization and not the secondary. Both primary and secondary crystallization could be measured by FTIR spectroscopy with sufficient accuracy to measure the kinetics of each and limited only by the length of time over which the measurements were made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen Z, Hay JN, Jenkins MJ. FTIR spectroscopic analysis of poly(ethylene terephthalate) on crystallization. Eur Polym J. 2012;48:1586–610.

    Article  CAS  Google Scholar 

  2. Chen Z, Hay JN, Jenkins MJ. The kinetics of crystallization of poly(ethylene terephthalate) measured by FTIR spectroscopy. Eur Polym J. 2013;49:1722–30.

    Article  CAS  Google Scholar 

  3. Henricks J, Boyum M, Zheng W. Crystallization kinetics and structure evolution of a polylactic acid during melt and cold crystallization. J Therm Anal Calorim. 2015;120:1765–74.

    Article  CAS  Google Scholar 

  4. Liu GJ. Isothermal crystallization kinetics of AB2 hyper-branched polymer (HBP)-filled polypropylene (PP). J Therm Anal Calorim. 2014;118:1401–6.

    Article  CAS  Google Scholar 

  5. Schawe JEK. Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Therm Anal Calorim. 2014;116:1165–74.

    Article  CAS  Google Scholar 

  6. Avrami MJ. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  7. Cheng SZD. Wunderlich B. Modification of the Avrami treatment of crystallization to account for nucleus and interface. Macromolecules. 1988;21:3327–8.

    Article  CAS  Google Scholar 

  8. Hillier IH. Modified Avrami equation for the bulk crystallization kinetics of spherulitic polymers. J Polym Sci A. 1965;3:3067–78.

    CAS  Google Scholar 

  9. Hay JN, Booth A. The effect of a secondary process on the course of polymer crystallisation. Br Polym J. 1972;4:19–26.

    Article  CAS  Google Scholar 

  10. Chen Z, Hay JN, Jenkins MJ. The effect of secondary crystallization on melting. Eur Polym J. 2013;49:2697–703.

    Article  CAS  Google Scholar 

  11. Chen Z, Hay JN, Jenkins MJ. Annealing of poly (ethylene terephthalate). Eur Polym J. 2014;50:235–447.

    Article  CAS  Google Scholar 

  12. Hoffman JD, Weekes JJ. Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. J Chem Phys. 1962;37:1723–39.

    Article  CAS  Google Scholar 

  13. Chan TW, Isayev AI. Quiescent polymer crystallization: modelling and measurements. Polym Eng Sci. 1994;34:461–71.

    Article  CAS  Google Scholar 

  14. Bittiger H, Marchessault RH, Niegisch WD. Crystal structure of poly (e-caprolactone). Acta Cryst. 1970;B26:1923–7.

    Article  Google Scholar 

  15. Hoffman JD, Frolen LJ, Ross GS, Lauritzen JI Jr. On the growth rates of spherulites and axialites from the melt in polyethylene fractions: Regime l and ll crystallization. J Res NBS. 1975;79A(6):671–700.

    Article  CAS  Google Scholar 

  16. De Gennes PG. Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys. 1971;55:572–9.

    Article  Google Scholar 

  17. Doi M, Edwards SF. The theory of polymer dynamics. Oxford: Oxford University Press; 1988.

    Google Scholar 

  18. Doi M, Edwards SF. Dynamics of concentrated polymer systems. Part 1, 2 and 3. J Chem Soc Faraday Trans 2. 1978;74:1789–1832.

    Article  CAS  Google Scholar 

  19. Kim K, Sperling LH, Klein A, Hammouda B. Reptation time, temperature and cosurfactant effects on the molecular interdiffusion rate between polystyrene latex film formation. Macromolecules. 1994;27:6841–50.

    Article  CAS  Google Scholar 

  20. Klein J, Briscoe BJ. The diffusion of long-chain molecules through bulk polyethelene. Proc R Soc Lond. 1979;A365:53–73.

    Article  Google Scholar 

  21. Baumgärtner A, Ebert U, Schafer L. Segment motion in the reptation model of polymer dynamics. II. Simulations. J Stat Phys. 1998;90:1376–400.

    Article  Google Scholar 

  22. El Maaty MIA, Bassett DC. Evidence for isothermal lamellar thickening at and behind the growth front as polyethylene crystallizes from the melt. Polymer. 2005;46:8682–8.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Frank Biddlestone for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James N. Hay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillipson, K., Jenkins, M.J. & Hay, J.N. The kinetics of crystallization of poly(ε-caprolactone) measured by FTIR spectroscopy. J Therm Anal Calorim 123, 1491–1500 (2016). https://doi.org/10.1007/s10973-015-5047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5047-5

Keywords

Navigation