Skip to main content
Log in

Using calorimetric approaches and thermal analysis technology to evaluate critical runaway parameters of azobisisobutyronitrile

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Azobisisobutyronitrile (AIBN), an azo compound, is widely used in the polymerization reaction process. Due to –N = N– composition of AIBN, it has excellent high thermal sensitivity and decent amounts of decomposition heat. When the cooling system fails, a runaway reaction may occur, leading to a fire or explosion. We used differential scanning calorimetry (DSC) to analyze the thermal hazard parameters of AIBN. Based on DSC thermal data, we can determine the apparent onset temperature (T 0), heat of decomposition (ΔH d), apparent activation energy (E a) and its reaction model to evaluate the basic thermal hazard of AIBN. We evaluated the critical runaway parameters of AIBN by Semenov methods, such as critical runaway temperatures and stable temperatures. These critical runaway parameters can be used to describe the unstable reaction criterion, which could determine AIBN’s thermal criticality. These results are able to prevent the thermal hazard and runaway during the production, transportation, and storage of AIBN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

R :

Gas constant (8.31415 J K−1 mol−1)

A :

Pre-exponential factor of Arrhenius equation (min−1)

C o :

Original concentration of the material (g cm−3)

C :

Concentration of the material (g cm−3)

C p :

Specific heat of material (J g−1 K−1)

E a :

Apparent activation energy (kJ mol−1)

h :

Heat exchange capability index of the cooling system (kJ m−2 K−1min−1)

k :

Reaction rate constant (dimensionless)

n :

Reaction order (dimensionless)

m :

Mass of material (g)

ΔH d :

Heat of decomposition (J g−1)

ΔH t :

Heat of decomposition at time (J g−1)

ΔH total :

Total heat of decomposition (J g−1)

r :

Reaction rate (mol L−1 s−1)

q g :

Heat production rate (kJ min−1)

q r :

Heat discharge rate (kJ min−1)

q r1 :

Heat discharge rate by high cooling medium (kJ min−1)

q r2 :

Heat discharge rate by cooling system (kJ min−1)

q r3 :

Heat discharge rate by low cooling system (kJ min−1)

S :

Effective heat exchange area (m2)

T :

Process temperature (K)

T 0 :

Apparent exothermic temperature (K)

T P :

Temperature at the maximum heat release in reaction (K)

T a :

Surroundings temperature under cooling system (K)

T a (tr) :

Surroundings temperature under cooling system at transitional point (K)

T S :

Temperature at the steady state, which occurs at the intersection point of curves q g and q r

t :

Reaction time (min)

t p :

Transitional point (K)

T CI :

Critical ignition or extinction temperature (K)

T FCE :

Final critical extinguish temperature (K)

T C (tr) :

Final critical ignition or extinguish temperature at transitional point (K)

T FSE :

Final stable point of extinguish temperature (K)

TFSI :

Final stable point of ignition temperature (K)

T FSL :

Stable point at low temperatures (K)

T FSH :

Stable point at higher temperatures (K)

T M :

Cutoff point between curves q g and q r at the highest and lowest cooling efficient system (K)

V :

Volume of process instruments (m3)

X A :

Fractional conversion (dimensionless)

ρ :

Density of material (g cm−3)

References

  1. Liu SH, Yu YP, Lin YC, Weng SY, Hsieh TF, Hou HY. Complex thermal evaluation for 2, 20-azobis (isobutyronitrile) by non-isothermal and isothermal kinetic analysis methods. J Therm Anal Calorim. 2013;112:1361–7.

    Google Scholar 

  2. Roduit B, Hartmann M, Folly P, Sarbach A, Brodard P, Baltensperger R. Determination of thermal hazard from DSC measurements. Investigation of self-accelerating decomposition temperature (SADT) of AIBN. J Therm Anal Calorim. 2014;117:1017–26.

    Article  CAS  Google Scholar 

  3. Lin CP, Tseng JM, Chang YM, Liu SH, Cheng YC, Shu CM. Modeling liquid thermal explosion reactor containing tert-butyl peroxybenzoate. J Therm Anal Calorim. 2010;102:587–9.

    Article  CAS  Google Scholar 

  4. You ML, Tseng JM, Liu MY, Shu CM. Runaway reaction of lauroyl peroxide with nitric acid by DSC. J Therm Anal Calorim. 2010;102:535–9.

    Article  CAS  Google Scholar 

  5. Luo KM, Chang JG, Lin SH, Chang CT, Yeh TF, Hu KH, Kao CS. The criterion of critical runaway and stable temperatures in cumene hydroperoxide reaction. J Loss Prev Process Ind. 2001;14:229–39.

    Article  Google Scholar 

  6. Tsai YT, You ML, Qian XM, Shu CM. Calorimetric techniques combined with various thermokinetic models to evaluate incompatible hazard of tert-butyl peroxy-2-ethyl hexanoate mixed with metal ions. Ind Eng Chem Res. 2013;52:8206–15.

    Article  CAS  Google Scholar 

  7. Lu KT, Luo KM, Lin PC, Hwang KL. Critical runaway conditions and stability criterion of RDX manufacture in continuous stirred tank reactor. J Loss Prev Process Ind. 2005;18:1–11.

    Article  Google Scholar 

  8. Li XR, Wang XL, Koseki H. Study on thermal decomposition characteristics of AIBN. J Hazard Mater. 2008;159:13–8.

    Article  CAS  Google Scholar 

  9. Boswell PG. On the calculation of activation energies using a modified Kissinger method. J Therm Anal Calorim. 1980;18:353–8.

    Article  CAS  Google Scholar 

  10. Marco E, Cuartielles S, Pen˜a JA, Santamaria J. Simulation of the decomposition of di-cumyl peroxide in an ARSST unit. Thermochim Acta. 2002;362:49–58.

    Article  Google Scholar 

  11. Snee TJ, Barcons C, Hernandez H, Zaldivar JM. Characterisation of an exothermic reaction using adiabatic and isothermal calorimetry. J Therm Anal Calorim. 1992;38:2729–47.

    Article  CAS  Google Scholar 

  12. Li XR, Koseki H. SADT prediction of autocatalytic material using isothermal calorimetry analysis. Thermochim Acta. 2005;431:113–6.

    Article  CAS  Google Scholar 

  13. Carmona VB, Oliveira RM, Silva WTL, Mattoso LHC, Marconcini JM. Nanosilica from rice husk: extraction and characterization. Ind Crop Prod. 2013;43:291–6.

    Article  CAS  Google Scholar 

  14. Bartknecht W. Explosions: course, prevention, and protection. New York: Springer; 1981.

    Book  Google Scholar 

  15. Semenov NN. Thermal theory of combustion and explosion. Usp Fiz Nauk. 1940;23:4–17.

    Google Scholar 

  16. Semenov NN. Zur theorie des verbrennungsprozesses. Z Phys Chem. 1928;48:571–3.

    CAS  Google Scholar 

  17. Morbidelli M, Varma A. A generalized criterion for parametric sensitivity: application to thermal explosion theory. Chem Eng Sci. 1988;43:91–8.

    Article  CAS  Google Scholar 

  18. Wu SH. Runaway reaction and thermal explosion evaluation of cumene hydroperoxide (CHP) in the oxidation process. Thermochim Acta. 2013;559:92–7.

    Article  CAS  Google Scholar 

  19. Eigenberger G, Schuler H. Reactor stability and safe reaction engineering. Int Chem Eng. 1989;29:12–9.

    Google Scholar 

  20. Villermaux J, Georgakis C. Current problems concerning batch reactions. Int Chem Eng. 1991;31:434–41.

    Google Scholar 

  21. Lee RY, Hou HY, Tseng JM, Chang MK, Shu CM. Reaction hazard analysis for the thermal decomposition of cumene hydroperoxide in the presence of sodium hydroxide. J Therm Anal Calorim. 2008;93:269–70.

    Article  CAS  Google Scholar 

  22. Wu KW, Hou HY, Shu CM. Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC. J Therm Anal Calorim. 2006;83:41–4.

    Article  CAS  Google Scholar 

  23. Kohlbrand HT. The use of SimuSolv in the modeling of ARC (accelerating rate calorimeter) data, International symposium on runaway reactions. New York: AIChE; 1989. p. 86–111.

    Google Scholar 

  24. Lu KT, Yang CC, Lin PC. The criteria of critical runaway and stable temperatures of catalytic decomposition of hydrogen peroxide in the presence of hydrochloric acid. J Hazard Mater. 2006;135:319–27.

    Article  CAS  Google Scholar 

  25. Lu KT, Luo KM, Lin SH, Su SH, Hu KH. The acid-catalyzed phenol–formaldehyde reaction: critical runaway conditions and stability criterion. Process Saf Environ Prot. 2004;82:37–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Li You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, YT., Cao, CR., Chen, WT. et al. Using calorimetric approaches and thermal analysis technology to evaluate critical runaway parameters of azobisisobutyronitrile. J Therm Anal Calorim 122, 1151–1157 (2015). https://doi.org/10.1007/s10973-015-4982-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4982-5

Keywords

Navigation