Skip to main content
Log in

Characterization of biochar of pine pellet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Recently, biochar was introduced as a bioadsorbent material to remove various contaminants in effluents, such as pigments, dyes, heavy metals, naphthalene, 1-naphthol, atrazine, phosphorus and some macro- and micronutrients. Therefore, biochar of biomass residue pellet obtained for slow pyrolysis was evaluated as an alternative process for the potential utilization as chemical contaminant remover with low cost. Thus, the main objective of this work was to produce biochar from pine residue pellet for subsequent use of the same as a potential adsorbent for effluent treatment. In order to perform the characterization, samples of biochar from pine pellet were produced using several heating rates (5–30 °C min−1), residence temperatures (200, 280 and 570 °C) and residence times (1 h and half an hour). The process adopted led to a rapid degradation of the raw material (pine pellet) associated with an intense generation of volatile compounds, conditions that led to a reduction in density and establishment of porous structure. Biochars had basic character (pH 8.47), predominance of aromatic structures, low moisture content (0.9–1.8 %), low ash content (1.25–1.80 %) and high thermal stability. Low humidity favors the adsorption and an improvement in the conservation during transport and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Scheer AP, Von Meien OF, de Toledo V, Maciel Filho R, Wolf-Maciel MR. A versatile equilibrium approach applied to adsorption process. AIDIC Conf Ser. 2002;5:285–92.

    Google Scholar 

  2. Nguyen TH, Cho HH, Poster DL, Ball WP. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environ Sci Technol. 2007;41:1212–7.

    Article  CAS  Google Scholar 

  3. Chun Y, Sheng GY, Chiou CT, Xing BS. Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol. 2004;38:4649–55.

    Article  CAS  Google Scholar 

  4. Bornemann LC, Kookana RS, Welp G. Differential sorption behavior of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere. 2007;67:1033–42.

    Article  CAS  Google Scholar 

  5. Chen B, Chen Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere. 2009;76:127–33.

    Article  CAS  Google Scholar 

  6. Chen B, Yuan M. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soils Sediments. 2011;11:62–71.

    Article  Google Scholar 

  7. Shafizadeh F, Sekiguchi Y. Development of aromaticity in cellulosic chars. Carbon. 1983;21:511–6.

    Article  CAS  Google Scholar 

  8. Malik PK. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid yellow 36. Dyes Pigments. 2003;56:239–49.

    Article  CAS  Google Scholar 

  9. Soldatkina LM, Sagaidak EV, Menchuk VV. Adsorption of cationic dyes from aqueous solutions on sunflower husk. J Water Chem Techno. 2009;31:238–43.

    Article  Google Scholar 

  10. Qiu Y, Zheng Z, Zhou Z, Sheng GD. Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol. 2009;100:5348–51.

    Article  CAS  Google Scholar 

  11. Beesley L, Marmiroli M. The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut. 2011;159:474–80.

    Article  CAS  Google Scholar 

  12. Uchimiya M, Lima IM, Klasson KT, Chang SC, Wartelle LH, Rodgers JE. Immobilization of heavy metal ions (Cu-II, Cd-II, Ni-II and Pb-II) by broiler ltter-derived biochars in water and soil. J Agr Food Chem. 2010;58:5538–44.

    Article  CAS  Google Scholar 

  13. Mohana D, Pittman CU Jr, Brickab M, Smithc F, Yanceyd B, Mohammadb J, Steelee PH, Alexandre-Francof MF, Gómez-Serranof V, Gongg H. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interf Sci. 2007;310:57–73.

    Article  Google Scholar 

  14. Cao XD, Ma LN, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol. 2009;43:3285–91.

    Article  CAS  Google Scholar 

  15. Liu Z, Zhang F. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater. 2009;167:933–9.

    Article  CAS  Google Scholar 

  16. Wilson JA, Pulford ID, Thomas S. Sorption of Cu and Zn by bone charcoal. Environ Geochem Health. 2003;25:51–6.

    Article  CAS  Google Scholar 

  17. Mortula M, Gibbons M, Gagnon G. Phosphorus adsorption by naturally-occurring material and industrial by-products. J Environ Eng Sci. 2007;6:157–64.

    Article  CAS  Google Scholar 

  18. Bridgwater AV. Renewable fuel and chemicals by thermal processing of biomass. Chem Eng J. 2003;91:87–102.

    Article  CAS  Google Scholar 

  19. Barret EP, Joyner LG, Halenda PP. Characterization of Solids in General and Catalysts in Particular. J Am Chem Soc. 1951;73:373–80.

    Article  Google Scholar 

  20. Brunelle JP. Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure Appl Chem. 1978;50(9–10):1211–29.

    CAS  Google Scholar 

  21. Guilarduci VVS, Mesquita JP, Martelli PB, Gorgulho HF. Phenol adsorption on commercial active carbon under alkaline conditions. Quim Nova. 2006;29(6):1226–32.

    Article  CAS  Google Scholar 

  22. ASTM D792-13. standard test methods for density and specific gravity (relative density) of plastics by displacement, ASTM International, West Conshohocken, PA, 2013.

  23. Oliveira AC, De Carneiro ACO, Vital BR, Almeida W, Pereira BLC, Cardoso MT. Quality parameters of Eucalyptus pellita F. Muell. wood and charcoal. For Sci. 2010;87:431–9.

    Google Scholar 

  24. ASTM D3173-11, Standard test method for moisture in the analysis sample of coal and coke, ASTM International, West Conshohocken, PA, 2011.

  25. ASTM D3174-12, standard test method for ash in the analysis sample of coal and coke from coal, ASTM International, West Conshohocken, PA, 2012.

  26. ASTM D1762-84(2013), Standard test method for chemical analysis of wood charcoal, ASTM International, West Conshohocken, PA, 2013.

  27. Marcilla A, Garcia-Garcia S, Asensio A, Conesa JA. Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells. Carbon. 2000;38:429–40.

    Article  CAS  Google Scholar 

  28. Bridgwater AV. Principles and practice of biomass fast pyrolysis process for liquids. J Anal Appl Pyrol. 1999;51(1–2):3–22.

    Article  CAS  Google Scholar 

  29. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.

    Article  CAS  Google Scholar 

  30. Dermibas A. Pyrolysis of ground beech wood in irregular heating rate conditions. J Anal Appl Pyrol. 2005;73:39–43.

    Article  Google Scholar 

  31. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S. Chemical kinetics of biomass pyrolysis. Energy Fuels. 2008;22:4292–300.

    Article  CAS  Google Scholar 

  32. Gracia-Perez M, Wang S, Shen J, Rhodes MJ, Lee WJ, Li CZ. Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass. Energy Fuels. 2008;22:2022–32.

    Article  Google Scholar 

  33. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  34. Antal MJ, Gronli M. The art, science and technology of charcoal production. Eng Chem Res. 2003;42:1619–40.

    Article  CAS  Google Scholar 

  35. Morais SAL, Nascimento EA, Melo DC. Chemical analysis of Pinus oocarpa wood part I—quantification of macromolecular components and volatile extractives. Revista Árvore. 2005;29(3):461–70.

    Article  Google Scholar 

  36. Wooten JB, Seeman JI, Hajaligol MR. Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A new mechanistic model. Energy Fuel. 2004;18:1–15.

    Article  CAS  Google Scholar 

  37. Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LEK, Ayucitra A. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization. Bioresour Technol. 2005;96:1364–9.

    Article  CAS  Google Scholar 

  38. Sharma RK, Wooten JB, Baliga VL, Lin X, Chan WG, Hajaligol MR. Characterization of chars from pyrolysis of lignin. Fuel. 2004;83:1469–82.

    Article  CAS  Google Scholar 

  39. Keiluweit M, Nico PS, Johnson M, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol. 2010;44:1247–53.

    Article  CAS  Google Scholar 

  40. Lima IM, Marshall WE. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties. Biosour Technol. 2005;96:699–706.

    Article  CAS  Google Scholar 

  41. El-Hendawy AA. Surface and adsorptive properties of carbons prepared from biomass. Appl Surf Sci. 2005;252:287–95.

    Article  CAS  Google Scholar 

  42. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. 7th ed. Hardcover: Wiley; 2005.

    Google Scholar 

  43. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37:1379–89.

    Article  CAS  Google Scholar 

  44. Lohmann TW. Modelling of reactions in coal pyrolysis. Ph.D. thesis, Institute of Applied Mathematics and statistics, Munich University of Technology, Munchen, Germany; 2001.

  45. Brewer CE, Schimidt-Rohr K, Satrio JA, Brown RC. Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy. 2009;28(3):386–96.

    Article  CAS  Google Scholar 

  46. Ng C, Losso JN, Marshall WE, Rao RM. Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin. Biosour Technol. 2002;84:177–85.

    Article  CAS  Google Scholar 

  47. Marton JM, Felipe MGA, Silva JBAE, Pessoa Júnior A. Evaluation of activated charcoals and conditions of adsorption on hemicellulosic hydrolyzate treatment of sugarcane bagasse using design of experiments. Analytica. 2003;3:45–54.

    Google Scholar 

  48. Garg VK, Gupta R, Yadav AB, Kumar R. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour Technol. 2003;89:121–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CAPES for financial support and BrBiomassa Company for pellet samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis A. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, L.B., Striebeck, M.V., Crespi, M.S. et al. Characterization of biochar of pine pellet. J Therm Anal Calorim 122, 21–32 (2015). https://doi.org/10.1007/s10973-015-4740-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4740-8

Keywords

Navigation