Skip to main content
Log in

Influence of chemical composition on martensitic transformation of MnNiIn shape memory alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The most extensively studied Heusler alloys are those based on the Ni–Mn–Ga system. However, to overcome the high cost of Gallium and the generally low martensitic transformation temperature, the search for Ga-free alloys has been recently attempted, particularly, by introducing In, Sn or Sb. In this work, two shape memory alloys, Mn50Ni50−xInx (x = 7.5 and 10), were obtained by rapid solidification. We outline their structural and thermal behaviour. The structural austenite–martensite transformation was checked by calorimetry. The transformation temperatures decrease as In content increases. The same pattern is reflected in entropy and enthalpy changes linked to transformation. The control of the valence electron by atom (e/a) determines the transformation temperatures range in this kind of alloys, and it is possible to develop alloys that can be candidates in applications such as sensors and actuators. In addition, X-ray diffraction was performed to verify the crystalline structure at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV. Large magnetic-field-induced strains in Ni2Mn Ga single crystals. J Appl Phys Lett. 1996;69:1966–8.

    Article  CAS  Google Scholar 

  2. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, et al. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B. 2007;7575:104414.

    Article  Google Scholar 

  3. Pons J, Chernenko VA, Santamarta R, Cesari E. Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Mater. 2000;48:3027–38.

    Article  CAS  Google Scholar 

  4. Koike K, Ohtsuka M, Honda Y, Katsuyama H, Matsumoto M, Itagaki KJ. Magnetoresistance of Ni–Mn–Ga–Fe ferromagnetic shape memory films. Magn Magn Mater. 2007;310:996–8.

    Article  Google Scholar 

  5. Marioni MA, O’Handley ROC, Allen SM, Hall SR, Paul DJ, Richard ML, et al. The ferromagnetic shape–memory effect in Ni–Mn–Ga. J Magn Magn Mater. 2005;290:35–41.

    Article  Google Scholar 

  6. Sánchez-Llamazares JL, Sánchez T, Santos JD, Perez MJ, Sánchez ML, Hernando B, et al. Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. Appl Phys Lett. 2008;92:012513.

    Article  Google Scholar 

  7. Santos JD, Sánchez T, Alvarez P, Sánchez ML, Sánchez-Llamazares JL, Hernando B, et al. Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons. J Appl Phys. 2008;103:07B326.

    Article  Google Scholar 

  8. Sánchez Llamazares JL, Hernando B, García C, González J, Escoda L, Suñol JJ. Martensitic transformation in Ni50.4Mn34.9In14.7 melt spun ribbons. J Phys D Appl Phys. 2008;42:045002.

    Article  Google Scholar 

  9. Lutterotti L. Maud: A Rietveld analysis program designed for the internet and experiment integration. Acta Cryst. 2000;A56:s54.

    Article  Google Scholar 

  10. Petricek V, Dusek M. The crystallographic computing system. Praha: Institute of Physics; 2000.

    Google Scholar 

  11. Chernenko VA, Cesari E, Pons J, Seguí C. Phase transformations in rapidly quenched Ni–Mn–Ga alloys. J Mater Res. 2000;15:1496–504.

    Article  CAS  Google Scholar 

  12. Zheng HX, Xia MX, Liu J, Li JG. Martensitic transformation of highly undercooled Ni–Fe–Ga magnetic shape memory alloys. J Alloy Compd. 2004;385:144.

    Article  CAS  Google Scholar 

  13. Zheng HX, Liu J, Xia MX, Li JG. Martensitic transformation of Ni–Fe–Ga magnetic shape memory alloys. J Alloy Compd. 2005;387:265.

    Article  CAS  Google Scholar 

  14. Kaufman L, Hullert M. Thermodynamics of martensite transformation. In: Olson GB, Owen WS, editors. martensite. Cambridge: ASM International; 1992. p. 41–58.

    Google Scholar 

  15. Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A. Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys Rev B. 2006;73:174413.

    Article  Google Scholar 

  16. Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys Rev B. 2005;72:014412.

    Article  Google Scholar 

  17. Liu ZH, Wu ZG, Yang H, Liu YN, Liu EK, Zhang HW. WU GH. Thermal and stress-induced martensitic transformations in quaternary Ni50Mn37(In, Sb)(13) ferromagnetic shape memory alloys. J Intermet. 2010;18:1690–4.

    Article  CAS  Google Scholar 

  18. Khovailo VV, Oikawa K, Abe T, Tagaki T. Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni2+xMn1−xGa. J Appl Phys. 2003;93:8483–5.

    Article  CAS  Google Scholar 

  19. Krenke T, Acet M, Wassermann FE, Moya X, Mañosa L, Planes A. Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys Rev B. 2006;73:174413.

    Article  Google Scholar 

  20. Coll R, Escoda L, Saurina J, Sanchez-Llamazares JL, Hernaudo B, Sunol JJ. Martensitic transformation in Mn–Ni–Sn Heusler alloys. J Therm Anal Calorim. 2010;99:905–9.

    Article  CAS  Google Scholar 

  21. Chernenko VAJ. Composition instability of a phase in Ni–Mn–Ga alloys. J Sci Mater. 1999;40:523–7.

    CAS  Google Scholar 

  22. Safaa NS, Hamzah E, Abubakar T, Zamri M, Tanemura M. Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J Therm Anal Calorim. 2014;118:111–22.

    Article  Google Scholar 

  23. Kök M, Yakinci ZD, Aydogdu A, Aydogdu Y. Thermal and magnetic properties of Ni51Mn28.5Ga19.5B magnetic-shape-memory alloy. J Therm Anal Calorim. 2014;115:555–9.

    Article  Google Scholar 

  24. Yildiz K, Kok M. Study of martensite transformation and microstructural evolution of Cu–Al–Ni–Fe shape memory alloys. J Therm Anal Calorim. 2014;115:1509–14.

    Article  CAS  Google Scholar 

  25. Kök M, Aydoğdu Y. Effect of composition on the thermal behavior of NiMnGa alloys. J Therm Anal Calorim. 2013;113:859–63.

    Article  Google Scholar 

  26. Adorno AT, Silva RAG. Effect of Ag additions on the reverse martensitic transformation in the Cu-10 mass% al alloy. J Therm Anal Calorim. 2006;83:241–6.

    Article  CAS  Google Scholar 

  27. Kreissl M, Neumann KU, Stephens T, Ziebeck KRA. The influence of atomic order on the magnetic and structural properties of the ferromagnetic shape memory compound Ni2MnGa. J Phys Condens Matter. 2003;15:3831–9.

    Article  CAS  Google Scholar 

  28. Tsuchiya K, Ohtoyo D, Umemoto M, Ohtsuka H. Effect of isothermal aging on martensitic transformation in Ni–Mn–Ga alloys. Trans Mater Res Soc Jpn. 2000;25:521–3.

    CAS  Google Scholar 

  29. Besseghini S, Pasquale M, Passaretti F, Sciacca A, Villa E. NiMnGa polycrystalline magnetically activated shape memory alloy: A calorimetric investigation. Scripta Mater. 2001;44:2681–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Tunisian National Ministry of Higher Education and Scientific Research and the Spanish Ministry of Higher Education and Scientific Research. This research was supported by the projects AP/039058/11, MAT2009-13108-C02-02 and 2014SGR1180.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Bachaga or M. Khitouni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachaga, T., Daly, R., Escoda, L. et al. Influence of chemical composition on martensitic transformation of MnNiIn shape memory alloys. J Therm Anal Calorim 122, 167–173 (2015). https://doi.org/10.1007/s10973-015-4716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4716-8

Keywords

Navigation