Skip to main content
Log in

Complementary photothermal techniques for complete thermal characterization of porous and semi-transparent solids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

An Erratum to this article was published on 06 December 2014

Abstract

The paper is focused on the ability of using two complementary photothermal techniques for the measurement of all thermal parameters of some porous and/or semi-transparent solid samples whose composition, structure, and geometry do not allow a complete thermal characterization using a single technique. In this work, we combine a contact technique, photopyroelectric (PPE) calorimetry, with a non-contact one, infrared lock-in IR thermography (IRT), in order to investigate some solid samples such as dental composites, building materials, drugs, and semiconductors. The composition and the geometry of the investigated samples make the PPE method (in “front” detection configuration together with thermal-wave resonator cavity (TWRC) technique as scanning procedure) suitable for thermal effusivity measurements and IRT for thermal diffusivity investigations. In such a way, this combination of methods leads to a complete thermal characterization of the investigated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dadarlat D, Pop MN, Streza M, Longuemart S, Depriester M, Sahraoui AH, Simon V. Combined FPPE–PTR calorimetry involving TWRC technique. Theory and mathematical simulations. Int J Thermophys. 2010;31:2275–82.

    Article  CAS  Google Scholar 

  2. Dadarlat D, Pop MN, Streza M, Longuemart S, Depriester M, Sahraoui AH, Simon V. Combined FPPE-PTR calorimetry involving TWRC technique II. Experimental: application to thermal effusivity measurements of solids. Int J Thermophys. 2011;32:2092–101.

    Article  CAS  Google Scholar 

  3. Dadarlat D. Contact and non-contact photothermal calorimetry for investigation of condensed matter. Trends and recent developments. J Therm Analysis Calor. 2012;110:27–35.

    Article  CAS  Google Scholar 

  4. Dadarlat D, Pop MN, Onija O, Streza M, Pop MM, Longuemart S, Depriester M, Sahraoui AH, Simon V. Photopyroelectric (PPE) calorimetry of composite materials. J Therm Analysis Calor. 2013;111:1129–32.

    Article  CAS  Google Scholar 

  5. Silaghi-Dumitrescu L, Dadarlat D, Streza M, Buruiana T, Prodan D, Hodisan I, Prejmerean C. Preparation of a new type of giomers and their thermal characterization by photopyroelectric calorimetry. Comparison with commercially available materials. J Therm Analysis Calor. 2014;. doi:10.1007/s10973-013-3561-x.

    Google Scholar 

  6. Mandelis A, Zver MM. Theory of the photopyroelectric effect in solids. J Appl Phys. 1985;57:4421–30.

    Article  CAS  Google Scholar 

  7. Chirtoc M, Mihailescu G. Theory of the photopyroelectric method for investigation of optical and thermal materials properties. Phys Rev. 1989;B40:9606–17.

    Article  Google Scholar 

  8. Dadarlat D, Chirtoc M, Neamtu C, Candea R, Bicanic D. Inverse photopyroelectric detection method. Phys Stat Sol. 1990;121:K231–4.

    Article  Google Scholar 

  9. Dadarlat D, Frandas A. Inverse photopyroelectric detection of phase transitions. Appl Phys. 1993;A56:235–9.

    Article  Google Scholar 

  10. Mandelis A, Matvienko A. Pyroelectric Materials and Sensors. 2007 (Kerala: D. Remiens): 61.

  11. Delenclos S, Chirtoc M, Sahraoui AH, Kolinsky C, Buisine JM. Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method. Rev Sci Instrum. 2002;73:2773–80.

    Article  CAS  Google Scholar 

  12. Shen J, Mandelis A. Thermal-wave resonator cavity. Rev Sci Instrum. 1995;66:4999–5005.

    Article  CAS  Google Scholar 

  13. Shen J, Mandelis A, Tsai H. Signal generation mechanism, intercavity-gas thermal diffusivity temperature dependence and absolute infrared emissivity measurements in a thermal-waveresonant cavity. Rev Sci Instrum. 1998;69:197–203.

    Article  CAS  Google Scholar 

  14. Busse G, Wu D, Karpen W. Thermal wave imaging with phase sensitive modulated thermography. J Appl Phys. 1992;71:3962–5.

    Article  CAS  Google Scholar 

  15. Breiteinstein O, Warta W, Langenkamp M. Lock-in thermography: basics and use for evaluating electronic devices and materials. Berlin: Springer. 2012, ISBN: 3642024165.

  16. Streza M, Pop MN, Kovacs K, Simon V, Longuemart S, Dadarlat D. Thermal effusivity investigations of solid materials by using the thermal-wave-resonator-cavity (TWRC) configuration. Theory and mathematical simulations. Laser Phys. 2009;19:1340–4.

    Article  CAS  Google Scholar 

  17. Dadarlat D. Photopyroelectric calorimetry of liquids. Recent development and applications. Laser Phys. 2009;19:1330–9.

    Article  CAS  Google Scholar 

  18. Salazar A, Oleaga A. Overcoming the influence of the coupling fluid in photopyroelectric measurements of solid samples. Rev Sci Instrum. 2012;83:014903.

    Article  Google Scholar 

  19. Reiter M, Hartman H. A new steady-state method for determining thermal conductivity. J Geophys Res. 2012;76:7047–51.

    Article  Google Scholar 

  20. Madelung O. Semiconductors: data handbook. Springer-Verlag; 2003.

Download references

Acknowledgements

The authors acknowledge the financial support supported by the Ministry of Education Research and Youth of Romania, through the National Research Programs, PN-II-ID-PCE-2011-3-0036 and PN-II-PT-PCCA-2-11-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Streza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadarlat, D., Streza, M., Onija, O. et al. Complementary photothermal techniques for complete thermal characterization of porous and semi-transparent solids. J Therm Anal Calorim 119, 301–308 (2015). https://doi.org/10.1007/s10973-014-4091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4091-x

Keywords

Navigation