Skip to main content
Log in

Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

An Erratum to this article was published on 29 August 2014

Abstract

We investigated the filling process of cellulose-based paper with natural clay nanotubes and their mixtures with hydroxypropyl cellulose (HPC) that is commonly used as glue and consolidant for degraded paper. A comprehensive characterization of the materials was carried out through morphology, wettability, thermal degradation, and tensile properties. The treatment with halloysite nanotubes generated a decrease of the paper mechanical performance and did not alter the thermal properties. The co-presence of HPC and nanoparticles generated a more uniform nanotubes distribution in the paper fibrous structure and a significant enhancement of both the mechanical properties and the surface hydrophobicity with respect to the HPC treatment. This work proposes the use of halloysite/HPC mixture in a new protocol for paper consolidation and represents a starting point to develop, with a biocompatible approach, smart composite material in which the nanotube cavity is filled with active species for paper protection or active response to external stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jana K. Mechanism of autoxidative degradation of cellulose. Restaurator. 2009;18:163–76.

    Google Scholar 

  2. Wp M, Bogaard J. Determination of the cellulose scission route in the hydrolytic and oxidative degradation of paper. Restaurator. 2009;15:26–45.

    Google Scholar 

  3. Havlínová B, Katuščák S, Petrovičová M, Maková A, Brezová V. A study of mechanical properties of papers exposed to various methods of accelerated ageing. part I. The effect of heat and humidity on original wood-pulp papers. J. Cult. Herit. 2009;10:222–31.

    Article  Google Scholar 

  4. Cavallaro G, Donato DI, Lazzara G, Milioto S. Determining the selective impregnation of waterlogged archaeological woods with poly(ethylene) glycols mixtures by differential scanning calorimetry. J Therm Anal Calorim. 2013;111:1449–55.

    Article  CAS  Google Scholar 

  5. Donato D, Lazzara G, Milioto S. Thermogravimetric analysis. J Therm Anal Calorim. 2010;101:1085–91.

    Article  CAS  Google Scholar 

  6. Strnadovà J, Ďurovic M. The cellulose ethers in paper conservation. Restaurator. 2009;15:220–41.

    Google Scholar 

  7. Shen J, Song Z, Qian X, Ni Y. A review on use of fillers in cellulosic paper for functional applications. Ind Eng Chem Res. 2010;50:661–6.

    Article  Google Scholar 

  8. Tankhiwale R, Bajpai SK. Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B Biointerfaces. 2009;69:164–8.

    Article  CAS  Google Scholar 

  9. Lvov Y, Abdullayev E. Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Bionanocomposites Green Plast Biomed Appl. 2013;38:1690–719.

    CAS  Google Scholar 

  10. Sciascia L. Turco Liveri ML, Merli M. Kinetic and equilibrium studies for the adsorption of acid nucleic bases onto K10 montmorillonite. Appl Clay Sci. 2011;53:657–68.

    Article  CAS  Google Scholar 

  11. Soares NFF, Moreira FKV, Fialho TL, Melo NR. Triclosan-based antibacterial paper reinforced with nano-montmorillonite: a model nanocomposite for the development of new active packaging. Polym Adv Technol. 2012;23:901–8.

    Article  CAS  Google Scholar 

  12. Lvov YM, Shchukin DG, Mohwald H, Price RR. Halloysite clay nanotubes for controlled release of protective agents. ACS Nano. 2008;2:814–20.

    Article  CAS  Google Scholar 

  13. Abdullayev E, Sakakibara K, Okamoto K, Wei W, Ariga K, Lvov Y. Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl Mater Interfaces. 2011;3:4040–6.

    Article  CAS  Google Scholar 

  14. Cavallaro G, Lazzara G, Milioto S. Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Extended physicochemical study. Langmuir. 2011;27:1158–67.

    Article  CAS  Google Scholar 

  15. Luo Z, Song H, Feng X, Run M, Cui H, Wu L, et al. Liquid crystalline phase behavior and sol–gel transition in aqueous halloysite nanotube dispersions. Langmuir. 2013;29:12358–66.

    Article  CAS  Google Scholar 

  16. Cavallaro G, Lazzara G, Milioto S. Exploiting the colloidal stability and solubilization ability of clay nanotubes/ionic surfactant hybrid nanomaterials. J Phys Chem C. 2012;116:21932–8.

    Article  CAS  Google Scholar 

  17. Zhao Y, Abdullayev E, Vasiliev A, Lvov Y. Halloysite nanotubule clay for efficient water purification. J Colloid Interface Sci. 2013;406:121–9.

    Article  CAS  Google Scholar 

  18. Qiao J, Adams J, Johannsmann D. Addition of halloysite nanotubes prevents cracking in drying latex films. Langmuir. 2012;28:8674–80.

    Article  CAS  Google Scholar 

  19. Cavallaro G, Donato DI, Lazzara G, Milioto S. Films of halloysite nanotubes sandwiched between two layers of biopolymer: from the morphology to the dielectric, thermal, transparency, and wettability properties. J Phys Chem C. 2011;115:20491–8.

    Article  CAS  Google Scholar 

  20. Blanco I, Abate L, Bottino FA, Bottino P. Thermal degradation of hepta cyclopentyl, mono phenyl-polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites. Polym Degrad Stab. 2012;97:849–55.

    Article  CAS  Google Scholar 

  21. Rotaru A, Nicolaescu I, Rotaru P, Neaga C. Thermal characterization of humic acids and other components of raw coal. J Therm Anal Calorim. 2008;92:297–300.

    Article  CAS  Google Scholar 

  22. Duce C, Ghezzi L, Onor M, Bonaduce I, Colombini M, Tine’ M, et al. Physico-chemical characterization of Protein–Pigment interactions in tempera paint reconstructions: casein/cinnabar and albumin/cinnabar. Anal Bioanal Chem. 2012;402:2183–93.

    Article  CAS  Google Scholar 

  23. Cavallaro G, Donato DI, Lazzara G, Milioto S. A comparative thermogravimetric study of waterlogged archaeological and sound woods. J Therm Anal Calorim. 2011;104:451–7.

    Article  CAS  Google Scholar 

  24. Kučerík J, David J, Weiter M, Vala M, Vyňuchal J, Ouzzane I, et al. Stability and physical structure tests of piperidyl and morpholinyl derivatives of diphenyl-diketo-pyrrolopyrroles (DPP). J Therm Anal Calorim. 2012;108:467–73.

    Article  Google Scholar 

  25. Budrugeac P, Cucos A, Miu L. The use of thermal analysis methods for authentication and conservation state determination of historical and/or cultural objects manufactured from leather. J Therm Anal Calorim. 2011;104:439–50.

    Article  CAS  Google Scholar 

  26. Farris S, Introzzi L, Biagioni P, Holz T, Schiraldi A, Piergiovanni L. Wetting of biopolymer coatings: contact angle kinetics and image analysis investigation. Langmuir. 2011;27:7563–74.

    Article  CAS  Google Scholar 

  27. Cavallaro G, Lazzara G, Milioto S. Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab. 2013;98:2529–36.

    Article  CAS  Google Scholar 

  28. Du M, Guo B, Jia D. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J. 2006;42:1362–9.

    Article  CAS  Google Scholar 

  29. Tang X, Alavi S. Structure and physical properties of starch/poly vinyl alcohol/laponite RD nanocomposite films. J Agric Food Chem. 2012;60:1954–62.

    Article  CAS  Google Scholar 

  30. Chivrac F, Pollet E, Dole P, Avérous L. Starch-based nano-biocomposites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr Polym. 2010;79:941–7.

    Article  CAS  Google Scholar 

  31. Jin C, Yan R, Huang J. Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem. 2011;21:17519–25.

    Article  CAS  Google Scholar 

  32. Aulin C, Shchukarev A, Lindqvist J, Malmström E, Wågberg L, Lindström T. Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces. J Colloid Interface Sci. 2008;317:556–67.

    Article  CAS  Google Scholar 

  33. Liu M, Jia Z, Liu F, Jia D, Guo B. Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. J Colloid Interface Sci. 2010;350:186–93.

    Article  CAS  Google Scholar 

  34. Marmur A. From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir. 2008;24:7573–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the University of Palermo, PRIN 2010-2011 (prot. 2010329WPF) and FIRB 2012 (prot. RBFR12ETL5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lazzara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4641 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallaro, G., Lazzara, G., Milioto, S. et al. Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection. J Therm Anal Calorim 117, 1293–1298 (2014). https://doi.org/10.1007/s10973-014-3865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3865-5

Keywords

Navigation