Skip to main content
Log in

Thermal characterization and kinetic analysis of nesquehonite, hydromagnesite, and brucite, using TG–DTG and DSC techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nesquehonite, hydromagnesite, and brucite are important precursors for the preparation of high-purity magnesia (MgO) using magnesium resources from salt lake as raw materials. In this paper, TG–DTG and DSC were used to investigate the thermal decomposition behaviors of the three precursors. Decomposition kinetic parameters at each stage were evaluated based on the TG data using the iso-conversional method. Decomposition mechanisms were determined using the master-plots method. The decomposition temperature range, heat absorption, and kinetic parameters of the three phases were then compared. The most probable mechanism of each stage from the perspective of crystal structure was found to be consistent with the calculation results from the master-plots method. Results led to the conclusion that nesquehonite is the most appropriate precursor for the preparation of high-purity MgO. Further studies on precursor selection and calcining condition selection for the preparation of MgO using bischofite will benefit from this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li H, Tang Z, Liu C, Lei G. Comprehensive exploitation and research of brine resources in the Lop Nur Salt Lake, Xinjiang. Acta Geosci Sin. 2008;29(4):517–24.

    Google Scholar 

  2. Othman AGM, Khalil NM. Sintering of magnesia refractories through the formation of periclase–forsterite–spinel phases. Ceram Int. 2005;31(8):1117–21.

    Article  CAS  Google Scholar 

  3. Alvarado E, Torres-Martinez LM, Fuentes AF, Quintana P. Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite. Polyhedron. 2000;19(22–23):2345–51.

    Article  CAS  Google Scholar 

  4. Bocanegra-Bernal MH. Agglomeration of magnesia powders precipitated from sea water and its effects on uniaxial compaction. Mater Sci Eng A. 2002;333(1–2):176–86.

    Article  Google Scholar 

  5. Bocanegra-Bernal MH. Microstructural evolution during sintering in MgO powders precipitated from sea water under induced agglomeration conditions. Powder Technol. 2008;186(3):267–72.

    Article  CAS  Google Scholar 

  6. Gao C, Zhang W, Li H, Lang L, Xu Z. Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst Growth Des. 2008;8(10):3785–90.

    Article  CAS  Google Scholar 

  7. Selvamani T, Yagyu T, Kawasaki S, Mukhopadhyay I. Easy and effective synthesis of micrometer-sized rectangular MgO sheets with very high catalytic activity. Catal Commun. 2010;11(6):537–41.

    Article  CAS  Google Scholar 

  8. Zhang Z, Zheng Y, Zhang J, Zhang Q, Chen J, Liu Z, et al. Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres. Cryst Growth Des. 2007;7(2):337–42.

    Article  CAS  Google Scholar 

  9. Sutradhar N, Sinhamahapatra A, Roy B, Bajaj HC, Mukhopadhyay I, Panda AB. Preparation of MgO nano-rods with strong catalytic activity via hydrated basic magnesium carbonates. Mater Res Bull. 2011;46(11):2163–7.

    Article  CAS  Google Scholar 

  10. Kloprogge JT, Martens WN, Nothdurft L, Duong LV, Webb GE. Low temperature synthesis and characterization of nesquehonite. J Mater Sci Lett. 2003;22(11):825–9.

    Article  CAS  Google Scholar 

  11. Zhang Z, Zheng Y, Ni Y, Liu Z, Chen J, Liang X. Temperature- and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates. J Phys Chem B. 2006;110(26):12969–73.

    Article  CAS  Google Scholar 

  12. Wang Y, Li Z, Demopoulos GP. Controlled precipitation of nesquehonite (MgCO3·3H2O) by the reaction of MgCl2 with (NH4)2CO3. J Cryst Growth. 2008;310(6):1220–7.

    Article  CAS  Google Scholar 

  13. Cheng W, Li Z, Demopoulos GP. Effects of temperature on the preparation of magnesium carbonate hydrates by reaction of MgCl2 with Na2CO3. Chin J Chem Eng. 2009;17(4):661–6.

    Article  CAS  Google Scholar 

  14. Xue D, Yan X, Wang L. Production of specific Mg(OH)2 granules by modifying crystallization conditions. Powder Technol. 2009;191(1–2):98–106.

    Article  CAS  Google Scholar 

  15. Cheng W, Li Z. Nucleation kinetics of nesquehonite (MgCO3·3H2O) in the MgCl2–Na2CO3 system. J Cryst Growth. 2010;312(9):1563–71.

    Article  CAS  Google Scholar 

  16. Mu J, Perlmutter DD. Thermal decomposition of carbonates, carboxylates, oxalates, acetates, formates, and hydroxides. Thermochim Acta. 1981;49(2–3):207–18.

    Article  CAS  Google Scholar 

  17. Hales MC, Frost RL, Martens WN. Thermo-Raman spectroscopy of synthetic nesquehonite: implication for the geosequestration of greenhouse gases. J Raman Spectrosc. 2008;39(9):1141–9.

    Article  CAS  Google Scholar 

  18. Hollingbery L, Hull T. The thermal decomposition of huntite and hydromagnesite: a review. Thermochim Acta. 2010;509(1):1–11.

    Article  CAS  Google Scholar 

  19. Beck CW. Differential thermal analysis curves of carbonate materials. Am Miner. 1950;35:985–1013.

    CAS  Google Scholar 

  20. Tsvetkov AI, Valiashikhina EP, Piloian GO. Differential thermal analysis of carbonate minerals. National Technical Information Service, U.S. Dept. of Commerce; 1974.

  21. Cesaro G. Sur la Nesquehonite. Appendice. Bull Acad Roy Belg. 1910;1910:844–5.

    Google Scholar 

  22. Mitchell AE. CCXII: studies on the dolomite system. Part II. J Chem Soc Trans. 1923;123:1887–904.

    Article  CAS  Google Scholar 

  23. Turner R, Hoffman I, Chen D. Thermogravimetry of the dehydration of Mg(OH)2. Can J Chem. 1963;41(2):243–51.

    Article  CAS  Google Scholar 

  24. Vagvolgyi V, Hales M, Frost RL, Locke A, Kristof J, Horvath E. Conventional and controlled rate thermal analysis of nesquehonite Mg(HCO3)(OH) 2H2O. J Therm Anal Calorim. 2008;94(2):523–8.

    Article  Google Scholar 

  25. Todor DN, Marcus S. Thermal analysis of minerals. Kent: Abacus press; 1976.

    Google Scholar 

  26. Padeste C, Oswald HR, Reller A. The thermal behaviour of pure and nickel-doped hydromagnesite in different atmospheres. Mater Res Bull. 1991;26(12):1263–8.

    Article  CAS  Google Scholar 

  27. Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3·Mg(OH)2 4H2O under different partial pressures of carbon dioxide. Thermochim Acta. 1978;27(1–3):45–59.

    Article  CAS  Google Scholar 

  28. Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3·Mg(OH)2 4H2O. J Inorg Nucl Chem. 1978;40(6):979–82.

    Article  CAS  Google Scholar 

  29. Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Thermal decomposition of basic magnesium carbonates under high-pressure gas atmospheres. Thermochim Acta. 1979;32(1–2):277–91.

    Article  CAS  Google Scholar 

  30. Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Thermogravimetric study on the decomposition of hydromagnesite 4MgCO3·Mg(OH)2·4H2O. Thermochim Acta. 1979;33:127–40.

    Article  CAS  Google Scholar 

  31. Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Isothermal differential scanning calorimetry on an exothermic phenomenon during thermal decomposition of hydromagnesite 4MgCO3·Mg(OH)2·4H2O. Thermochim Acta. 1979;34(2):233–7.

    Article  CAS  Google Scholar 

  32. Znaidi L, Chhor K, Pommier C. Batch and semi-continuous synthesis of magnesium oxide powders from hydrolysis and supercritical treatment of Mg(OCH3)2. Mater Res Bull. 1996;31(12):1527–35.

    Article  CAS  Google Scholar 

  33. Chen DTY, Fong PH. Thermal analysis of magnesium hydroxide. J Therm Anal Calorim. 1977;12(1):5–13.

    Article  CAS  Google Scholar 

  34. Bhatti A, Dollimore D, Dyer A. Decomposition kinetics of magnesium hydroxide using DTA. Thermochim Acta. 1984;78(1–3):55–62.

    Article  CAS  Google Scholar 

  35. Hartman M, Trnka O, Svoboda K, Kocurek J. Decomposition kinetics of alkaline-earth hydroxides and surface area of their calcines. Chem Eng Sci. 1994;49(8):1209–16.

    Article  CAS  Google Scholar 

  36. Halikia I, Neou-Syngouna P, Kolitsa D. Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data. Thermochim Acta. 1998;320(1):75–88.

    Article  CAS  Google Scholar 

  37. L’vov BV, Novichikhin AV, Dyakov AO. Mechanism of thermal decomposition of magnesium hydroxide. Thermochim Acta. 1998;315(2):135–43.

    Article  Google Scholar 

  38. Yue LH, Jin DL, Lu DY, Xu ZD. The non-isothermal kinetic analysis of thermal decomposition of Mg(OH)2. Acta Physicochim Sin. 2005;21(7):752 (in Chinese).

    Google Scholar 

  39. Nahdi K, Rouquerol F, Trabelsi Ayadi M. Mg(OH)2 dehydroxylation: a kinetic study by controlled rate thermal analysis (CRTA). Solid State Sci. 2009;11(5):1028–34.

    Article  CAS  Google Scholar 

  40. Baddar FG. S 36. The electronic interpretation of the strecker degradation. J Chem Soc (Resumed). 1949:S163–7. doi:10.1039/JR949000S163.

  41. Green J. Calcination of precipitated Mg(OH)2 to active MgO in the production of refractory and chemical grade MgO. J Mater Sci. 1983;18(3):637–51.

    Article  CAS  Google Scholar 

  42. Hirota K, Okabayashi N, Toyoda K, Yamaguchi O. Characterization and sintering of reactive MgO. Mater Res Bull. 1992;27(3):319–26.

    Article  CAS  Google Scholar 

  43. Sidjabat O, Trimm D, Wainwright M. The preparation and properties of magnesia catalyst supports. J Chem Technol Biotechnol. 1993;56(3):241–5.

    Article  CAS  Google Scholar 

  44. Ak M, Çılgı G, Kuru F, Cetişli H. Thermal decomposition kinetics of polypyrrole and its star shaped copolymer. J Therm Anal Calorim. 2013;111(2):1627–32.

    Article  CAS  Google Scholar 

  45. Çılgı G, Cetişli H, Donat R. Thermal and kinetic analysis of uranium salts. J Therm Anal Calorim. 2012;110(1):127–35.

    Article  Google Scholar 

  46. Emen F, Külcü N. Thermal behaviours of N-pyrrolidine-N′-(2-chlorobenzoyl)thiourea and its Ni(II), Cu(II), and Co(III) complexes. J Therm Anal Calorim. 2012;109(3):1321–31.

    Article  CAS  Google Scholar 

  47. Shuping Z, Yulong W, Mingde Y, Chun L, Junmao T. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101(1):359–65.

    Article  Google Scholar 

  48. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.

    Article  CAS  Google Scholar 

  49. Zhang GZ, Zheng HC, Xiang X. Thermal decomposition and kinetics studies on the 2,2-dinitropropyl acrylate–styrene copolymer and 2,2-dinitropropyl acrylate–vinyl acetate copolymer. J Therm Anal Calorim. 2013;111(2):1039–44.

    Article  CAS  Google Scholar 

  50. Hu R, Shi Q. Thermal analysis kinetics. China: Science Press; 2001 (in Chinese).

    Google Scholar 

  51. Frost RL, Palmer SJ. Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3)·2H2O-implications for the formula of nesquehonite. Spectrochim Acta A Mol Biomol Spectrosc. 2011;78(4):6.

    Google Scholar 

  52. Bariand P, Cesbron F, Vachey H, Sadrzadeh M. Hydromagnesite from Soghan. Iran Miner Rec. 1973;4:18–20.

    CAS  Google Scholar 

  53. Botha A, Strydom CA. DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. J Therm Anal Calorim. 2003;71(3):987–96.

    Article  CAS  Google Scholar 

  54. Vágvölgyi V, Frost R, Hales M, Locke A, Kristóf J, Horváth E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92(3):893–7.

    Article  Google Scholar 

  55. Inglethorpe S, Stamatakis M. Thermal decomposition of natural mixtures of hydromagnesite and huntite from Kozani, Northern Greece. Miner Wealth. 2003;126:7–18.

    CAS  Google Scholar 

  56. Brown M, Dollimore D, Galwey A. Comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1980.

    Google Scholar 

  57. Giester G, Lengauer CL, Rieck B. The crystal structure of nesquehonite, MgCO3·3H2O, from Lavrion. Greece Miner Petr. 2000;70(3–4):153–63.

    Article  CAS  Google Scholar 

  58. Xiaoxing Y, Yunfei L, Dongfeng X, Chenglin Y, Lei W. Bonding analysis on the crystallization of magnesium carbonate hydrates. J Synth Cryst. 2007;36(5).

  59. Akao M, Marumo F, Iwai S. The crystal structure of hydromagnesite. Acta Crystallogr Sect B. 1974;30(11):2670–2.

    Google Scholar 

  60. Akao M, Iwai S. The hydrogen bonding of hydromagnesite. Acta Crystallogr Sect B. 1977;33(4):1273–5.

    Google Scholar 

  61. Mookherjee M, Stixrude L. High-pressure proton disorder in brucite. Am Miner. 2006;91(1):127–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Technology R&D Program (No. 2008BAB35B05), National Natural Science Foundation of China (No. 21176142), and Independent Research Programs of Tsinghua University (No. 2011Z08141) and Program for New Century Excellent Talents in University (NCET-12-0308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, H., Chen, Z., Wu, Y. et al. Thermal characterization and kinetic analysis of nesquehonite, hydromagnesite, and brucite, using TG–DTG and DSC techniques. J Therm Anal Calorim 115, 1949–1960 (2014). https://doi.org/10.1007/s10973-013-3372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3372-0

Keywords

Navigation