Skip to main content
Log in

The melting behavior of trinitrotoluene nanoconfined in controlled pore glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The depression of the melting temperature and heat of fusion of trinitrotoluene (TNT) confined in the nanoscale pores of controlled pore glasses (CPG) were studied by differential scanning calorimetry. 8, 12, 16, 35, and 70 nm pore size CPG were used in the experiment. Both the melting temperature and the heat of fusion of confined nanocrystals decreased with decreasing pore size, which is consistent with previous studies on other materials. When plotting the melting temperature depression as a function of reciprocal pore diameter, an excellent linear fit could be applied to the experimental data points. From the slope of this linear fit, the solid–liquid interface energy of TNT was calculated according to the Gibbs–Thomson equation and found equal to 22.1 ± 0.4 mJ m−2. This is in reasonable agreement with the values calculated from the empirical Turnbull equation and the liquid layer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kanakubo M, Hiejima Y, Minami K, Aizawa T, Nanjo H. Melting point depression of ionic liquids confined in nanospaces. Chem Commun. 2006;17:1828–30.

    Article  Google Scholar 

  2. Buffat PH, Borel JP. Size effect on the melting temperature of gold particles. Phys Rev A. 1976;13:2287–98.

    Article  CAS  Google Scholar 

  3. Castro T, Reifenbeger R, Choi E, Andres RP. Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B. 1990;42:8548–56.

    Article  CAS  Google Scholar 

  4. Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett. 1996;77:99–102.

    Article  CAS  Google Scholar 

  5. Dippel M, Maier A, Gimple V, Wider H, Evenson WE, Schatz G. Size-dependent melting of self-assembled indium nanostructures. Phys Rev Lett. 2001;87:095505.

    Article  CAS  Google Scholar 

  6. Sun J, Simon SL. The melting behavior of aluminum nanoparticles. Thermochim Acta. 2007;463:32–40.

    Article  CAS  Google Scholar 

  7. Jackson CL, McKenna GB. The melting behavior of organic materials confined in porous solids. J Chem Phys. 1990;93:9002.

    Article  CAS  Google Scholar 

  8. Lee JA, Rosner H, Corrigan JF, Huang Y. Phase transitions of naphthalene and its derivatives confined in mesoporous silicas. J Phys Chem C. 2011;115:4738–48.

    Article  CAS  Google Scholar 

  9. Qin Q, McKenna GB. Melting of solvents nanoconfined by polymers and networks. J Polym Sci B. 2006;44:3475–86.

    Article  CAS  Google Scholar 

  10. Ha JM, Hillmyer MA, Ward MD. Thermotropic properties of organic nanocrystals embedded in ultrasmall crystallization chambers. J Phys Chem B. 2005;109:1392–9.

    Article  CAS  Google Scholar 

  11. Jones BA, Torkelson JM. Large melting point depression of 2–3-nm length-scale nanocrystals formed by the self-assembly of an associative polymer: telechelic, pyrene-labeled poly(dimethylsiloxane). J Polym Sci B. 2004;42:3470–5.

    Article  CAS  Google Scholar 

  12. Xu B, Di X, McKenna GB. Melting of pentaerythritol tetranitrate (PETN) nanoconfined in controlled pore glasses. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3075-6.

  13. Gibbs JW. The collected works of J. Willard Gibbs. New York: Longmans Green and Co.; 1928.

    Google Scholar 

  14. Thomson JJ. Applications of dynamics to physics and chemistry. London, New York: Macmillan and Co.; 1888.

    Google Scholar 

  15. Jackson CL, McKenna GB. Vitrification and crystallization of organic liquids confined to nanoscale pores. Chem Mater. 1996;8:2128–37.

    Article  CAS  Google Scholar 

  16. Turnbull D. Formation of crystal nuclei in liquid metals. J Appl Phys. 1950;21:1022.

    Article  CAS  Google Scholar 

  17. Akbulu S, Ocak Y, Boyuk U, Erol M, Keliotu K. Solid-liquid interfacial energy of pyrene. J Appl Phys. 2006;100:123505.

    Article  Google Scholar 

  18. Lu HM, Wen Z, Jiang Q. The solid–liquid interface energy of organic crystals. J Phys Org Chem. 2007;20:236–40.

    Article  CAS  Google Scholar 

  19. Mu R, Xue Y, Henderson DO. Thermal and vibrational investigation of crystal nucleation and growth from a physically confined and supercooled liquid. Phys Rev B. 1996;53:6041–7.

    Article  CAS  Google Scholar 

  20. Burkhardt LR, Moore DW. Freezing point diagrams of some systems containing TNT. J Phys Chem. 1955;59:1231–1231.

    Article  Google Scholar 

  21. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  22. Lowell S, Shields JE, Thomas MA, Thommes M. Characterization of porous solids and powders: surface area, pore size and density. New York: Kluwer Academic Publisher; 2004.

    Book  Google Scholar 

  23. Bernstein J. Polymorphism in molecular crystals. Oxford: Oxford Science; 2002. p. 275–96.

    Google Scholar 

  24. Gallagher HG, Sherwood JN. Polymorphism, twinning and morphology of crystals of 2,4,6-trinitrotoluene grown from solution. J Chem Soc. 1996;92:2107–16.

    CAS  Google Scholar 

  25. Military Explosives, Department of the Army Technical Manual, TM 9-1300-214. 1984. p. 8–74.

Download references

Acknowledgments

The authors are grateful to the Office of Naval Research under Project No. N00014-11-1-0424 and the John R. Bradford endowment at Texas Tech University, each for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. McKenna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di, X., Xu, B. & McKenna, G.B. The melting behavior of trinitrotoluene nanoconfined in controlled pore glasses. J Therm Anal Calorim 113, 533–537 (2013). https://doi.org/10.1007/s10973-013-3196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3196-y

Keywords

Navigation