Skip to main content
Log in

Flame-retarded hydrophobic cellulose through impregnation with aqueous solutions and supercritical CO2

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We have developed flame-retarded hydrophobic cellulose-based materials by producing in situ water-soluble and insoluble inorganic microparticles on various surfaces of native cellulose (filter paper and pure cotton textile). The nanoparticles were produced by simple impregnation of cellulose with two different aqueous solutions followed by a third impregnation with supercritical CO2. Finally, the composite cellulose materials were covered by a silicon-based polymer thin film, to turn it into hydrophobic and prevent the water-soluble particles from absorbing humidity. The obtained flame-retardant behaviour is due to a combination of mechanisms. The total treatment of cellulose has an impact on, both its surface morphology and its hydrophilicity. Thus, the hydrophobic nature of the silicon-based polymer film along with the roughness caused by the presence of the inorganic particles and the inherent roughness of native cellulose resulted in superhydrophobic behaviour. The same process-concept was also applied to regenerated (from newspaper) cellulose with ionic liquids. The produced materials were characterised by thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy, scanning electron microscopy and water contact angle measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cerruti P, Ambrogi V, Postiglione A, Rychly J, Matisova-Rychla L, Carfagna C. Morphological and thermal properties of cellulose-montmorillonite nanacomposites. Biomacromolecules. 2008;9:3004–13.

    Article  CAS  Google Scholar 

  2. Cunha AG, Gandini A. Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose. 2010;17:875–89.

    Article  CAS  Google Scholar 

  3. Egorov VM, Smirnova SV, Formanovsky AA, Pletnev IV, Zolotov YA. Dissolution of cellulose in ionic liquids as a way to obtain test materials for metal-ion detection. Anal Bioanal Chem. 2007;387:2263–9.

    Article  CAS  Google Scholar 

  4. Liu A, Walther A, Ikkala O, Belova L, Berglund LA. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules. 2011;12:633–41.

    Article  CAS  Google Scholar 

  5. Quan S-L, Kang S-G, Chin I-J. Characterization of cellulose fibers electrospun using ionic liquid. Cellulose. 2010;17:223–30.

    Article  CAS  Google Scholar 

  6. Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C. Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem. 2008;10:965–71.

    Article  CAS  Google Scholar 

  7. Tsioptsias C, Panayiotou C. Preparation of cellulose-nanohydroxyapatite composite scaffolds from ionic liquids solutions. Carbohyd Polym. 2008;74:99–105.

    Article  CAS  Google Scholar 

  8. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ. Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules. 2006;7:415–8.

    Article  CAS  Google Scholar 

  9. Wu K, Shen MM, Hu Y, Xing W, Wang X. Thermal degradation and intumescent flame retardation of cellulose whisker/epoxy resin composite. J Therm Anal Calorim. 2011;104:1083–90.

    Article  CAS  Google Scholar 

  10. Liodakis SE, Statheropoulos MK, Tzamtzis NE, Pappa AA, Parissakis GK. The effect of salt and oxide-hydroxide additives on the pyrolysis of cellulose and Pinus halepensis pine needles. Thermochim Acta. 1996;278:99–108.

    Article  CAS  Google Scholar 

  11. Liodakis S, Fetsis IK, Agiovlasitis IP. The fire-retarding effect on inorganic phosphorous compounds on the combustion of cellulosic materials. J Therm Anal Calorim. 2009;98:285–91.

    Article  CAS  Google Scholar 

  12. Totolin V, Sarmadi M, Manolache SO, Denes FS. Atmospheric pressure plasma enhanced synthesis of flame retardant cellulosic materials. J Appl Polym Sci. 2010;117:281–9.

    CAS  Google Scholar 

  13. Mostashari SM, Kamali Nia Y, Fayyaz F. Thermogravimetry of deposited caustic soda used as a flame-retardant for cotton fabric. J Therm Anal Calorim. 2008;91:237–41.

    Article  CAS  Google Scholar 

  14. Gaan S, Sun G. Effect of phosphorus and nitrogen on flame retardant cellulose: a study of phosphorus compounds. J Anal Appl Pyrolysis. 2007;78:371–7.

    Article  CAS  Google Scholar 

  15. Rowell RM, Le Van-Green SL. (2005). In: Rowell R, editor. Handbook of wood chemistry and wood composites. Boca Raton: Taylor and Francis, CRC Press; 2005. p. Ch 6.

  16. Tian CM, Shi ZH, Zhang HY, Xu ZJ, Shi JR, Guo HZ. Thermal degradation of cotton cellulose. J Therm Anal Calorim. 1999;55:93–8.

    Article  CAS  Google Scholar 

  17. Jin H, Kettunen M, Laiho A, Pynnonen H, Paltakari J, Marmur A, Ikkala O, Ras RHA. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir. 2011;27:1930–4.

    Article  CAS  Google Scholar 

  18. Li S, Xie H, Zhang S, Wang X. Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Commun. 2007;(46):4857–9.

  19. Littunen K, Hippi U, Johansson L-S, Osterberg M, Tammelin T, Laine J, Seppala J. Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohyd Polym. 2011;84:1039–47.

    Article  CAS  Google Scholar 

  20. Shirgholami MA, Khalil-Abad MS, Khajavi R, Yazdanshenas ME. Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution immersion process. J Colloid Interface Sci. 2011;359:530–5.

    Article  CAS  Google Scholar 

  21. Manoudis PN, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Panayiotou C. Superhydrophobic composite films produced on various substrates. Langmuir. 2008;24:11225–32.

    Article  CAS  Google Scholar 

  22. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellulose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.

    Article  CAS  Google Scholar 

  23. Zhang H, Wu J, Zhang J, He J. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules. 2005;38:8272–7.

    Article  CAS  Google Scholar 

  24. Zhang J, Wu J, Cao Y, Sang S, Zhang J, He J. Synthesis of celluloses benzoates under homogeneous conditions in an ionic liquid. Cellulose. 2009;16:299–308.

    Article  CAS  Google Scholar 

  25. Tsioptsias C, Panayiotou C. Thermal stability and hydrophobicity enhancement of wood through impregnation with aqueous solutions and supercritical carbon dioxide. J Mater Sci. 2011;46:5406–11.

    Article  CAS  Google Scholar 

  26. Soares S, Ricardo NMPS, Jones S, Heatley F. High temperature thermal degradation of cellulose in air studied using FTIR and 1H and 13C solid state NRM. Eur Polym J. 2001;37:737–45.

    Article  CAS  Google Scholar 

  27. Gaan S, Sun G. Effect of nitrogen additives on thermal decomposition of cotton. J Anal Appl Pyrolysis. 2009;84:108–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Panayiotou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kivotidi, S., Tsioptsias, C., Pavlidou, E. et al. Flame-retarded hydrophobic cellulose through impregnation with aqueous solutions and supercritical CO2 . J Therm Anal Calorim 111, 475–482 (2013). https://doi.org/10.1007/s10973-012-2473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2473-5

Keywords

Navigation