Skip to main content
Log in

The use of the High-Temperature Gas-Balance (HTGB) for thermogravimetric measurements

Thermal analysis detecting equilibrium conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Several methods are established in thermal analysis to investigate phase formation, phase transition, and decomposition reactions. The analysis of phase equilibria with volatile components is particularly feasible by using standard method of thermogravimetry. Hardly any investigations of phase formation reactions are possible to realize if one of the components is lost by vaporization. By using the “High-Temperature Gas-Balance” (HTGB), the vapor phase is enclosed in a silica ampoule and thus forms an equilibrium gas phase in permanent contact with the solid phase. The measurement signal Δm meas is caused by change of the leverage of the horizontal balance support during evaporation and condensation. The application of the HTGB allows the analysis of solid–gas equilibria in the working range from 0.01 till 15 bar at temperatures up to 1,100 °C. The first comparison of evaporation reactions determined by standard thermogravimetric analyses and by measurements using the HTGB is given for the inorganic systems: P, As, SeO2, PtI2, and Hg/I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brown ME. Handbook of thermal analysis and calorimetry, vol. 3. Amsterdam: Elsevier Science Ltd; 1998.

    Google Scholar 

  2. Haines P. Principles of thermal analysis and calorimetry. London: Royal Society of Chemistry; 2002.

    Book  Google Scholar 

  3. Amankwah RK, Pickles CA. Thermodynamic, thermogravimetric and permittivity studies of hausmannite (Mn3O4) in air. J Thermal Anal Calorim. 2009;98:849–53.

    Article  CAS  Google Scholar 

  4. Sergent N, Gelin P, Perier-Camby L, Praliaud H, Thomas G. Study of the interactions between carbon monoxide and high specific surface area tin dioxide. Thermogravimetric analysis and FTIR spectroscopy. J Thermal Anal Calorim. 2003;72:1117–26.

    Article  CAS  Google Scholar 

  5. Hackert A, Plies V. Determination of temperature dependent partial pressures in closed systems—a new method. Z Anorg Allg Chem. 1998;624:74–80.

    Article  CAS  Google Scholar 

  6. Martienssen W, Warlimont H. Springer handbook of condensed matter and materials data. Berlin: Springer; 2005.

    Book  Google Scholar 

  7. Knacke O, Kubaschevski O, Hesselmann K. Thermochemical properties of inorganic substances. 2nd ed. Berlin: Springer; 1991.

    Google Scholar 

  8. Barin I. Thermochemical data of pure substances. Weinheim: VCH Verlagsgesellschaft; 1989.

    Google Scholar 

  9. Binnewies M, Milke E. Thermochemical data of elements. Weinheim: Wiley-VCH; 1999.

    Google Scholar 

  10. Riesen R. Adjustment of heating rate for maximum resolution in TG and TMA. J Thermal Anal Calorim. 1998;53:365–74.

    Article  CAS  Google Scholar 

  11. Krabbes G, Bieger W, Sommer KH, Söhnel T, Steiner U. GMIN Version 5.0b, package TRAGMIN for calculation of thermodynamic equilibrium. Dresden: IFW Dresden, TU Dresden; 2008.

    Google Scholar 

  12. Schmidt P. Thermodynamic analysis of existence ranges of solid phases- principles of syntheses planning in inorganic solid state chemistry. Habilitation, TU Dresden; 2007. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1200397971615-40549.

  13. Schmidt P, Oppermann H, Feja St. Thermal decomposition of TeSeO4 and Te3SeO8. Z Anorg Allg Chem. 2001;627:1958–65.

    Article  CAS  Google Scholar 

  14. Schäfer H, Trenkel B. The iodine catalyzed sublimation of red phosphorus. Z Anorg Allg Chem. 1972;391:11–8.

    Article  Google Scholar 

  15. Lange S, Schmidt P, Nilges T. Au3Snp7@black phosphorus: an easy access to black phosphorus. Inorg Chem. 2007;46:4028–35.

    Article  CAS  Google Scholar 

  16. Roth WL, Dewitt T, Smith AJ. Polymorphism of red phosphorus. J Am Chem Soc. 1947;69(11):2881–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support by the Priority program—Schwerpunktprogramm 1415 of the German research funding organization—Deutsche Forschungsgemeinschaft (DFG). The high-temperature materials and furnaces specialist HTM Reetz (http://www.htm-reetz.de/en/index.asp) is gratefully acknowledged for the technical support in construction and optimization of the High-Temperature Gas-Balance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, P., Schöneich, M., Bawohl, M. et al. The use of the High-Temperature Gas-Balance (HTGB) for thermogravimetric measurements. J Therm Anal Calorim 110, 1511–1521 (2012). https://doi.org/10.1007/s10973-011-2107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2107-3

Keywords

Navigation