Skip to main content
Log in

Magnetic properties of nanocrystalline CuFe2O4 and kinetics of thermal decomposition of precursor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

CuFe2(C2O4)3·4.5H2O was synthesized by solid-state reaction at low heat using CuSO4·5H2O, FeSO4·7H2O, and Na2C2O4 as raw materials. The spinel CuFe2O4 was obtained via calcining CuFe2(C2O4)3·4.5H2O above 400 °C in air. The CuFe2(C2O4)3·4.5H2O and its calcined products were characterized by thermogravimetry and differential scanning calorimetry, Fourier transform FT-IR, X-ray powder diffraction, scanning electron microscopy, energy dispersive X-ray spectrometer, and vibrating sample magnetometer. The result showed that CuFe2O4 obtained at 400 °C had a saturation magnetization of 33.5 emu g−1. The thermal process of CuFe2(C2O4)3·4.5H2O experienced three steps, which involved the dehydration of four and a half crystal water molecules at first, then decomposition of CuFe2(C2O4)3 into CuFe2O4 in air, and at last crystallization of CuFe2O4. Based on KAS equation, OFW equation, and their iterative equations, the values of the activation energy for the thermal process of CuFe2(C2O4)3·4.5H2O were determined to be 85 ± 23 and 107 ± 7 kJ mol−1 for the first and second thermal process steps, respectively. Dehydration of CuFe2(C2O4)3·4.5H2O is multistep reaction mechanisms. Decomposition of CuFe2(C2O4)3 into CuFe2O4 could be simple reaction mechanism, probable mechanism function integral form of thermal decomposition of CuFe2(C2O4)3 is determined to be 1 − (1 − α)1/4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sugimoto M. The past, present, and future of ferrites. J Am Ceram Soc. 1999;82:269–80.

    Article  CAS  Google Scholar 

  2. Raj K, Moskowitz B, Casciari R. Advances in ferrofluid technology. J Magn Magn Mater. 1995;149:174–80.

    Article  CAS  Google Scholar 

  3. McMichael RD, Shull RD, Swartzendruber LJ, Bennett LH, Watson RE. Magnetocaloric effect in superparamagnets. J Magn Magn Mater. 1992;111:29–33.

    Article  CAS  Google Scholar 

  4. Sun ZP, Liu L, Jia DZ, Pan WY. Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sens Actuators B. 2007;125:144–8.

    Article  Google Scholar 

  5. Li JJ, Yuan HM, Li GD, Liu YJ, Leng JS. Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles. J Magn Magn Mater. 2010;322:3396–400.

    Article  CAS  Google Scholar 

  6. Wu XH, Wu WW, Zhou KW, Cui XM, Liao S. Products and non-isothermal kinetics of thermal decomposition of MgFe2(C2O4)3·6H2O. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1968-9.

  7. Li FS, Wang HB, Wang L, Wang JB. Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method. J Magn Magn Mater. 2007;309:295–9.

    Article  CAS  Google Scholar 

  8. Wu WW, Cai JC, Wu XH, Li YN, Liao S. Magnetic properties and crystallization kinetics of Zn0.5Ni0.5Fe2O4. Rare Met. 2011. doi:10.1007/s12598-011-0439-6.

  9. Satyanarayana L, Madhusudan Reddy K, Manorama SV. Nanosized spinel NiFe2O4: a novel material for the detection of liquefied petroleum gas in air. Mater Chem Phys. 2003;82:21–6.

    Article  CAS  Google Scholar 

  10. Zhang K, Holloway T, Pradhan AK. Magnetic behavior of nanocrystalline CoFe2O4. J Magn Magn Mater. 2011;323:1616–22.

    Article  CAS  Google Scholar 

  11. Wu WW, Cai JC, Wu XH, Liao S, Huang AG. Co0.35Mn0.65Fe2O4 magnetic particles: preparation and kinetics research of thermal process of the precursor. Powder Technol. 2011. doi:10.1016/j.powtec.2011.09.048.

  12. Goya GF, Rechenberg HR. Superparamagnetic transition and local disorder in CuFe2O4 nanoparticles. Nanostruct Mater. 1998;10:1001–11.

    Article  CAS  Google Scholar 

  13. Jiang JZ, Goya GF, Rechenberg HR. Magnetic properties of nanostructured CuFe2O4. J Phys Condens Mater. 1999;11:4063–78.

    Article  CAS  Google Scholar 

  14. Bomio M, Lavela P, Tirado JL. Electrochemical evaluation of CuFe2O4 samples obtained by sol–gel methods used as anodes in lithium batteries. J Solid State Electrochem. 2008;12:729–37.

    Article  CAS  Google Scholar 

  15. Pandya PB, Joshi HH, Kulkarni RG. Magnetic and structural properties of CuFe2O4 prepared by the co-precipitation method. J Mater Sci Lett. 1991;10:474–6.

    Article  CAS  Google Scholar 

  16. Tao SW, Gao F, Liu XQ, Sørensen OT. Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mater Sci Eng B. 2000;77:172–6.

    Article  Google Scholar 

  17. Zhang YS, Stangle GC. Preparation of fine multicomponent oxide ceramic powder by a combustion synthesis process. J Mater Res. 2004;9:1997–2004.

    Google Scholar 

  18. Vanetsev AS, Ivanov VK, Tret’yakov Yu D. Microwave synthesis of lithium, copper, cobalt, and nickel ferrites. Dokl Chem. 2002;387:332–4.

    Article  CAS  Google Scholar 

  19. Wu XH, Wu WW, Li SS, Cui XM, Liao S. Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O. J Therm Anal Calorim. 2011;103:805–12.

    Article  CAS  Google Scholar 

  20. Chrissafis K. Kinetics of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.

    Article  CAS  Google Scholar 

  21. Chen ZP, Chai Q, Liao S, He Y, Wu WW, Li B. Preparation of LiZnPO4·H2O via a novel modified method and its non-isothermal kinetics and thermodynamics of thermal decomposition. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1799-8

  22. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  23. Flynn JH. The ‘temperature integral’—its use and abuse. Thermochim Acta. 1997;300:83–92.

    Article  CAS  Google Scholar 

  24. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.

    Article  CAS  Google Scholar 

  25. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  26. Liqing L, Donghua C. Application of iso-temperature method of multiple rate to kinetic analysis. Dehydration for calcium oxalate monohydrate. J Therm Anal Calorim. 2004;78:283–93.

    Article  CAS  Google Scholar 

  27. Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99:551–61.

    Article  CAS  Google Scholar 

  28. Liu C, Wu XH, Wu WW, Cai JC, Liao S. Preparation of nanocrystalline LiMnPO4 via a simple and novel method and its isothermal kinetics of crystallization. J Mater Sci. 2011;46:2474–8.

    Article  CAS  Google Scholar 

  29. Boonchom B, Danvirutai C. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim. 2009;98:771–7.

    Article  CAS  Google Scholar 

  30. Wu WW, Li YN, Zhou KW, Wu XH, Liao S, Wang Q. Nanocrystalline Zn0.5Ni0.5Fe2O4: preparation and kinetics of thermal process of precursor. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-2027-2.

Download references

Acknowledgements

This study was financially supported by the National Nature Science Foundation of China (Grant no. 21161002) and the Guangxi Nature Science Foundation of China (Grant no. 2011GXNSFA018036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Zhou, K., Wu, W. et al. Magnetic properties of nanocrystalline CuFe2O4 and kinetics of thermal decomposition of precursor. J Therm Anal Calorim 111, 9–16 (2013). https://doi.org/10.1007/s10973-011-2104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2104-6

Keywords

Navigation