Skip to main content
Log in

Thermal transitions and dynamics in nanocomposite hydrogels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hydrogels based on nanocomposites of statistical poly(hydroxyethyl acrylate-co-ethyl acrylate) and silica, prepared by simultaneous copolymerization and generation of silica nanoparticles by sol–gel process at various copolymer compositions and silica contents, characterized by a fine dispersion of filler, were investigated with respect to glass transition and polymer dynamics by dielectric techniques. These include thermally stimulated depolarization currents and dielectric relaxation spectroscopy, covering together broad ranges of frequency and temperature. In addition, equilibrium water sorption isotherms were recorded at room temperature (25 °C). Special attention was paid to the investigation of effects of silica on glass transition, polymer dynamics (secondary γ and β sw relaxations and segmental α relaxation), and electrical conductivity in the dry systems (xerogels) and in the hydrogels at various levels of relative humidity/water content. An overall reduction of molecular mobility is observed in the nanocomposite xerogels, in particular at high silica contents. Analysis of the results and comparison with previous work on similar systems enable to discuss this reduction of molecular mobility in terms of constraints to polymeric motion imposed by interfacial polymer–filler interactions and by the formation of a continuous silica network interpenetrated with the polymer network at filler contents higher than about 15 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peppas NA, editor. Hydrogels in medicine and pharmacy, vol. I. Boca Raton, FL: CRC Press; 1986.

    Google Scholar 

  2. Stoy V, Kliment C. Hydrogels: speciality plastics for biomedical and pharmaceutical applications. Basel: Technomic; 1996.

    Google Scholar 

  3. Kyritsis A, Pissis P, Gomez Ribelles JL, Monleon Pradas M. Depolarization thermocurrent studies in poly(hydroxyethyl acrylate)/water hydrogels. J Polym Sci Part B Polym Phys. 1994;32:1001–8.

    Article  CAS  Google Scholar 

  4. Kyritsis A, Pissis P, Grammatikakis J. Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylate)/water hydrogels. J Polym Sci Part B Polym Phys. 1995;33:1737–50.

    Article  CAS  Google Scholar 

  5. Kyritsis A, Pissis P, Gomez Ribelles JL, Monleon Pradas M. Polymer-water interactions in poly(hydroxyethyl acrylate) hydrogels studied by dielectric, calorimetric and sorption isotherm measurements. Polym Gels Netw. 1995;3:445–69.

    Article  CAS  Google Scholar 

  6. Gallego Ferrer G, Monleon Pradas M, Gomez Ribelles JL, Pissis P. Swelling and thermally stimulated depolarization currents in hydrogels formed by interpenetrating polymer networks. J Non-Cryst Solids. 1998;235–237:692–6.

    Article  Google Scholar 

  7. Gomez Ribelles JL, Monleon Pradas M, Gallego Ferrer G, Peidro Torres N, Perez Gimenez V, Pissis P, Kyritsis A. Poly(methyl acrylate)/poly(hydroxyethyl acrylate) sequential interpenetrating polymer networks. Miscibility and wáter sorption behavior. J Polym Sci Part B Polym Phys. 1999;37:1587–99.

    Article  CAS  Google Scholar 

  8. Campillo-Fernandez AJ, Salmeron Sanchez M, Sabater i Serra R, Meseguer Duenas JM, Monleon Pradas M, Gomez Ribelles JL. Water-induced (nano) organization in poly(ethyl acrylate-co-hydroxyethyl acrylate) networks. Eur Polym J. 2008;44:1996–2004.

    Article  CAS  Google Scholar 

  9. Kyritsis A, Spanoudaki A, Pandis C, Hartmann L, Pelster R, Shinyashiki N, Rodríguez Hernández JC, Gómez Ribelles JL, Monleón Pradas M, Pissis P. Water and polymer dynamics in poly(hydroxyl ethyl acrylate-co-ethyl acrylate) copolymer hydrogels. Eur Polym J. 2011;47:2391–2402.

    Article  CAS  Google Scholar 

  10. Haraguchi K. Nanocomposite hydrogels. Curr Opin Solid State Mater Sci. 2007;11:47–54.

    Article  CAS  Google Scholar 

  11. Janovák L, Varga J, Kemény L, Dékány I. Swelling properties of copolymer hydrogels in the presence of montmorillonite and alkylammonium montmorillonite. Appl Clay Sci. 2009;43:260–70.

    Article  Google Scholar 

  12. Janovák L, Varga J, Kemény L, Dékány I. The effect of surface modification of layer silicates on the thermoanalytical properties of poly(NIPAAm-co-AAm) based composite hydrogels. J Therm Anal Calorim. 2009;98:485–93.

    Article  Google Scholar 

  13. Rodriguez Hernandez JC, Salmeron Sanchez M, Gomez Ribelles JL, Monleon Pradas M. Polymer-silica nanocomposites prepared by sol–gel technique: nanoindentation and tapping mode AFM studies. Eur Polym J. 2007;43:2775–83.

    Article  CAS  Google Scholar 

  14. Rodriguez Hernandez JC, Monleon Pradas M, Gomez Ribelles JL. Properties of poly(2-hydroxyethyl acrylate)-silica nanocomposites obtained by the sol–gel process. J Non-Cryst Solids. 2008;354:1900–8.

    Article  Google Scholar 

  15. Pandis C, Spanoudaki A, Kyritsis A, Pissis P, Rodriguez Hernandez JC, Gomez Ribelles JL, Monleon Pradas M. Water sorption characteristics of poly(2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. J Polym Sci Part B Polym Phys. 2011;49:657–68.

    Article  CAS  Google Scholar 

  16. Stathopoulos A, Klonos P, Kyritsis A, Pissis P, Christodoulides C, Rodriguez Hernandez JC, Monleon Pradas M, Gomez Ribelles JL. Water sorption and polymer dynamics in hybrid poly(hydroxyethyl-co-ethyl acrylate)/silica hydrogels. Eur Polym J. 2010;46:101–11.

    Article  CAS  Google Scholar 

  17. Kremer F, Schoenhals A, editors. Broadband dielectric spectroscopy. Berlin: Springer; 2002.

    Google Scholar 

  18. Donth E. The glass transition: relaxation dynamics in liquids and disordered materials. Berlin: Springer; 2001.

    Google Scholar 

  19. Havriliak S Jr, Havriliak SJ. Dielectric and mechanical relaxation in materials. Munich: Hanser; 1997.

    Google Scholar 

  20. Kripotou S, Pissis P, Savelyev YV, Robota LP, Travinskaya TV. Polymer dynamics in polyurethane/clay nanocomposites studied by dielectric and thermal techniques. J Macromol Sci Phys. 2010;49:86–110.

    Article  CAS  Google Scholar 

  21. Pelster R, Spanoudaki A, Kruse T. Microstructure and effective properties of nanocomposites: ferrofluids as tunable model systems. J Phys D Appl Phys. 2004;37:307–17.

    Article  CAS  Google Scholar 

  22. Pissis P, Kyritsis A. Electrical conductivity studies in hydrogels. Solid State Ionics. 1997;97:105–13.

    Article  CAS  Google Scholar 

  23. Angell CA. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J Non-Cryst Solids. 1991;131–133:13–31.

    Article  Google Scholar 

  24. Fragiadakis D, Pissis P. Glass transition and segmental dynamics in poly(dimethylsiloxane)/silica nanocomposites studied by various techniques. J Non-Cryst Solids. 2007;353:4344–52.

    Article  CAS  Google Scholar 

  25. Kourkoutsaki Th, Logakis E, Kroutilova I, Matejka L, Nedbal J, Pissis P. Polymer dynamics in rubbery epoxy networks/polyhedral oligomeric silsequioxanes nanocomposites. J Appl Polym Sci. 2009;113:2569–82.

    Article  CAS  Google Scholar 

  26. Fragiadakis D, Bokobza L, Pissis P. Dynamics near the particle surface in natural rubber–silica nanocomposites. Polymer. 2011;52:3175–3182.

    Article  CAS  Google Scholar 

  27. Klonos P, Panagopoulou A, Bokobza L, Kyritsis A, Peoglos V, Pissis P. Comparative studies on effects of silica and titania nanoparticles on crystallization and complex segmental dynamics in poly(dimethylsiloxane). Polymer. 2010;51:5490–9.

    CAS  Google Scholar 

  28. Napolitano S, Wuebbenhorst M. The lifetime of the deviations from bulk behavior in polymers confined at the nanoscale. Nat Commun. 2011;2:260. doi:10.1038/incomms1259.

Download references

Acknowledgements

The research leading to these results has received support from the program for basic research PEBE 2010 funded by the National Technical University of Athens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kyritsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyritsis, A., Spanoudaki, A., Pandis, C. et al. Thermal transitions and dynamics in nanocomposite hydrogels. J Therm Anal Calorim 108, 1067–1078 (2012). https://doi.org/10.1007/s10973-011-2093-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2093-5

Keywords

Navigation