Skip to main content
Log in

Determination of sublimation rate of 2,4,6-trinitrotoluene (TNT) nano thin films using UV-absorbance spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We report the in situ measurements of the sublimation rate and activation energy of continuous nanofilms of 2,4,6-trinitrotoluene (TNT) in air using UV absorbance spectroscopy. The films were prepared using acetone-dissolved TNT by simple spin coating deposition technique. Unlike traditional mass loss techniques, this new method is independent of the surface area of the sample which contributes to errors in determining physical parameters accurately in both bulk and thin films of materials. The calculated activation energy and temperature-dependent sublimation rates agree well with the reported values for TNT thin films. The results suggest that UV absorbance spectroscopy is an efficient tool in measuring thermodynamic properties in the nanometer scale for materials with absorbance in the UV region of the electromagnetic spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Czarnecki J, Sestak J. Practical thermogravimetry. J Therm Anal Calorim. 2000;60:759–78.

    Article  CAS  Google Scholar 

  2. Hajimirsadeghis SS, Teimouri MR, Rahimi-Nasrabadi M, Dehghanpour S. Non-isothermal kinetic study of the thermal decomposition of N-{bis[benzyl(methyl)amino]phosphoryl}-2,2-dichloroacetamide and N-{bis[dibenzylamino]phosphoryl}-2,2-dichloroacetamide. J Therm Anal Calorim. 2009;98:463–8.

    Article  Google Scholar 

  3. Hobbs ML, Nakos JT, Brady PD. Response of a glass/phenolic composite to high temperatures. J Therm Anal Calorim. 2011;103:543–53.

    Article  CAS  Google Scholar 

  4. Gershanik AP, Zeiri Y. Sublimation rate of TNT microcrystals in air. J Phys Chem A. 2010;114:12403–10.

    Article  CAS  Google Scholar 

  5. Mu R, Ueda A, Liu YC, Wu M, Henderson DO, Lareau RT, Chamberlain RT. Effects of interfacial interaction potential on the sublimation rates of TNT films on a silica surface examined by QCM and AFM techniques. Surf Sci. 2003;530:L293–6.

    Article  CAS  Google Scholar 

  6. Pitchimani R, Burnham AK, Weeks BL. Quantitative thermodynamic analysis of sublimation rates using an atomic force microscope. J Phys Chem B. 2007;11:9182–5.

    Article  Google Scholar 

  7. Burnham AK, Qiu SR, Pitchimani R, Weeks BL. Comparison of kinetic parameters of single crystal pentaerythritol tetranitrate using atomic force microscopy and thermogravimetric analysis: implications on coarsening mechanisms. J Appl Phys. 2009;105:104312.

    Article  Google Scholar 

  8. Ingle JDJ, Crouch SR. Spectrochemical analysis. New Jersey: Prentice Hall; 1988.

    Google Scholar 

  9. Schubert EF. Light-emitting diodes. 2nd ed. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  10. Hikal WM, Harmon HJ. Early events in 2,4,6-trinitrotoluene (TNT) degradation by porphyrins: binding of TNT to porphyrin by hydrophobic and hydrogen bonds. J Hazard Mater. 2008;154:826–31.

    Article  CAS  Google Scholar 

  11. Hummel RE, Fuller AM, Schöllhorn C, Holloway CPH. Detection of explosive materials by differential reflection spectroscopy. Appl Phys Lett. 2006;88:231903.

    Article  Google Scholar 

  12. Phelan JM, Patton RT. Sublimation rates of explosive materials-method development and initial results, Sandia report SAND2004-4525, Sandia national laboratories: Albuquerque, 2004.

  13. Zeman S. Analysis and prediction of the Arrhenius parameters of low-temperature thermolysis of nitramines by means of the 15 N NMR spectroscopy. Thermochim Acta. 1999;333:121–9.

    Article  CAS  Google Scholar 

  14. Pella PE. Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN. J Chem Thermodynam. 1977;9:301–5.

    Article  CAS  Google Scholar 

  15. Leggett DC. Vapor pressure of 2,4,6-trinitrotoluene by a gas chromatographic headspace technique. J Chromatogr. 1977;133:83–90.

    Article  CAS  Google Scholar 

  16. Cundall RB, Palmer TF, Wood CEC. Vapour pressure measurements on some organic high explosives. J Chem Soc Faraday Trans1. 1978;74:1339–45.

    Article  CAS  Google Scholar 

  17. Oxley JC, Smith JL, Shinde K, Moran J. Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propell Explos Pyrot. 2005;30:127–30.

    Article  CAS  Google Scholar 

  18. Lenchitz C, Velicky RW. Vapor pressure and heat of sublimation of three nitrotoluenes. J Chem Eng Data. 1970;15:401–3.

    Article  CAS  Google Scholar 

  19. Edwards GT. The vapor pressure of 2,4,6-trinitrotoluene. Trans Faraday Soc. 1950;46:423.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by NSF career (CBET-0644832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid M. Hikal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hikal, W.M., Weeks, B.L. Determination of sublimation rate of 2,4,6-trinitrotoluene (TNT) nano thin films using UV-absorbance spectroscopy. J Therm Anal Calorim 110, 955–960 (2012). https://doi.org/10.1007/s10973-011-1888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1888-8

Keywords

Navigation