Skip to main content
Log in

Comparison of olive, corn, soybean and sunflower oils by PDSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Vegetable oils of different types and qualities are widely used in homemade cooking and food industry. Most of the safety concerns were related to possible oxidation processes produced at the relatively high temperatures used when frying. Thus, the thermal stability to oxidation is an important parameter for edible oils. Oils from the Arbequina, Picual, Hojiblanca and Cornicabra olive varieties, corn, soybean and sunflower are studied in this work by means of pressure differential scanning calorimetry (PDSC). The general aim of this work is to evaluate the thermooxidative stability of these vegetable oils by the ASTM onset oxidation temperature (OOT) method. In addition, the ability of some parameters to identify different oils and some relations between the chemical composition and the OOT results are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vorria E, Giannou V, Tzia C. Hazard analysis and critical control point of frying—safety assurance of fried foods. Eur J Lipid Sci Technol. 2004;106:759–65.

    Article  CAS  Google Scholar 

  2. Kochhar SP. The composition of frying oils. In: Rossell, editor. Frying. Improving quality. Cambridge, UK: Woodhead Publishing Limited; 2001. p. 87–114.

    Chapter  Google Scholar 

  3. Trade Standard applying to olive oils and olive-pomace oils. In:COI/T.15/NC No3/Rev.4. International Olive Council. 2009. http://www.internationaloliveoil.org/downloads/NORMAEN1.pdf. Accessed 10 Sep 2010.

  4. U.S. Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 22. In: Nutrient Data Laboratory. 2009. http://www.nal.usda.gov/fnic/foodcomp/Data/SR15/dnload/pk260w32.exe. Accessed 11 Sep 2010.

  5. Aranda F, Gomez-Alonso S, Rivera del Alamo RM, Salvador MD, Fregapane G. Triglyceride, total and 2-position fatty acid composition of Cornicabra virgin olive oil: comparison with other Spanish cultivars. Food Chem. 2004;86:485–92.

    Article  CAS  Google Scholar 

  6. Aparicio R, Luna G. Characterisation of monovarietal virgin olive oils. Eur J Lipid Sci Technol. 2002;104:614–27.

    Article  CAS  Google Scholar 

  7. Qin LX, Chao J, Yan SY, Li YM, Gang CX. Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS. Food Chem. 2009;113:692–700.

    Article  Google Scholar 

  8. Albi T, Lanzón A, Guinda A, León M, Pérez-Camino MC. Microwave and conventional heating effects on thermoxidative degradation of edible fats. J Agric Food Chem. 1997;45:3795–8.

    Article  CAS  Google Scholar 

  9. Vecchio S, Cerretani L, Bendini A, Chiavaro E. Thermal decomposition study of monovarietal extra virgin olive oil by simultaneous thermogravimetric/differential scanning calorimetry: relation with chemical composition. J Agric Food Chem. 2009;57:4793–800.

    Article  CAS  Google Scholar 

  10. Dweck J, Sampaio CMS. Analysis of the thermal decomposition of commercial vegetable oils in air by simultaneous TG/DTA. J Therm Anal Calorim. 2004;75:385–91.

    Article  CAS  Google Scholar 

  11. Pambou-Tobi NP, Nzikou JM, Matos L, Ndangui CB, Kimbonguila A, Abena AA, Silou T, Scher J, Desobry S. Comparative study of stability measurements for two frying oils: soybean oil and refined palm oil. Adv J Food Sci Technol. 2010;2:22–7.

    CAS  Google Scholar 

  12. Vittadini E, Lee JH, Frega NG, Min DB, Vodovotz Y. DSC determination of thermally oxidized olive oil. J Am Oil Chem Soc. 2003;80:533–7.

    Article  CAS  Google Scholar 

  13. Ostrowska-Ligeza E, Bekas W, Kowalska D, Lobacz M, Wroniak M, Kowalski B. Kinetics of commercial olive oil oxidation: dynamic differential scanning calorimetry and Rancimat studies. Eur J Lipid Sci Technol. 2010;112:268–74.

    Article  CAS  Google Scholar 

  14. Kodali DR. Oxidative stability measurement of high-stability oils by pressure differential scanning calorimeter (PDSC). J Agric Food Chem. 2005;53:7649–53.

    Article  CAS  Google Scholar 

  15. Erhan SZ, Sharma BK, Perez JM. Oxidation and low temperature stability of vegetable oil-based lubricants. Ind Crop Prod. 2006;24:292–9.

    Article  CAS  Google Scholar 

  16. American standard test method for determining oxidation induction time of hydrocarbons by differential scanning calorimetry, vol. 14.02. West Conshohocken, PA: ASTM International E1858-08; 2008.

  17. American standard test method for oxidation onset temperature of hydrocarbons by differential scanning calorimetry, vol. 14.02. West Conshohocken, PA: ASTM International E2009-08; 2008.

  18. Maxwell SE, Delaney HD. Designing experiments and analyzing data. A model comparison perspective. 2nd ed. New Jersey: Lawrence Erlbaum Associates; 2004.

    Google Scholar 

  19. Nasiruddin Khan M, Sarwar A, Farooq Wahab M. Chemometric assessment of thermal oxidation of some edible oils. Effect of hot plate heating and microwave heating on physicochemical properties. J Therm Anal Calorim. 2010;102:369–74.

    Article  Google Scholar 

  20. Peña D. Análisis de datos multivariantes. Madrid: McGraw-Hill; 2002.

    Google Scholar 

  21. Hernández Orallo J, Ramírez Quintana MJ, Ferri Ramírez C. Introducción a la minería de datos. Madrid: Pearson-Pentice Hall; 2008.

    Google Scholar 

  22. Efron B, Tibshirani R. An introduction to the bootstrap. Boca Raton: Chapman & Hall/CRC; 1993.

    Google Scholar 

  23. Ferraty F, Vieu P. Nonparametric functional data analysis: theory and practice. Springer series in statistics. Berlin: Springer; 2006.

    Google Scholar 

  24. López-Granados F, Peña-Barragán JM, Jurado-Expósito M, Francisco-Fernández M, Cao R, Alonso-Betanzos A, Fontenla-Romero O. Multispectral classification of grass weeds and wheat (Triticum durum) using linear and nonparametric functional discriminant analysis and neural networks. Weed Res. 2008;48:28–37.

    Article  Google Scholar 

  25. Peña D. Regresión y diseño de experimentos. Madrid: Alianza Editorial; 2007.

    Google Scholar 

Download references

Acknowledgements

The first, second, fourth and fifth authors acknowledge the Spanish Ministerio de Ciencia e Innovación for the provision of funds MTM2008-00166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge López-Beceiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Beceiro, J., Artiaga, R., Gracia, C. et al. Comparison of olive, corn, soybean and sunflower oils by PDSC. J Therm Anal Calorim 104, 169–175 (2011). https://doi.org/10.1007/s10973-010-1165-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1165-2

Keywords

Navigation