Skip to main content
Log in

Physico-chemical characterization and dissolution properties of nifluminic acid-cyclodextrin-PVP ternary systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In view of the poor aqueous solubility of nifluminic acid (NIF), the aim of this article was to improve its solubility and dissolution rate through the preparation of formulations based on hydroxypropyl β-cyclodextrin (HPβCD) and polyvinylpyrrolidone K25 (PVP K25), a combination of carriers which has been advantageously used for a similar purpose with various hydrophobic drugs. Ternary systems of NIF, HPβCD, and PVP K25 were prepared in different drug to CD to PVP ratios by physical mixing, kneading, microwave irradiation, and co-evaporation. Differential scanning calorimetry, thermogravimetric analysis, hot stage microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffractometry were used to investigate the resulting solid-state interactions. The results showed that the solid state of the drug in the amorphous or crystalline ternary combinations influenced both the solubility and the dissolution rate of NIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Insel PA. Analgesic-antipyretics and antiinflammatory agents; drugs employed in the treatment of rheumatoid arthritis and gout. In: Gilman AG, Rall TW, Nies AS, Taylor P, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. Singapore: McGraw-Hill; 1991. p. 668.

    Google Scholar 

  2. Fürst Zs editor. In: Farmakológia. Budapest: Medicina; 2001. p. 845.

  3. Houin G, Tremblay D, Bree F, Dufour A, Ledudal P, Tillement JP. The pharmacokinetics and availability of niflumic acid in humans. Int J Clin Pharmacol Ther Toxicol. 1983;21:130–4.

    CAS  Google Scholar 

  4. Lan SJ, Chando TJ, Weliky I, Schreiber EC. Metabolism of niflumic acid-14C: absorption, excretion and biotransformation by human and dog. J Pharmacol Exp Ther. 1973;186:323–30.

    CAS  Google Scholar 

  5. Craig DQM. The mechanisms of drug release from solid dispersions in water soluble polymers. Int J Pharm. 2002;231:131–44.

    Article  CAS  Google Scholar 

  6. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  CAS  Google Scholar 

  7. Chokshia RJ, Sandhu HK, Shah NH, Malick WA. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution-pros and cons. Drug Deliv. 2007;14:33–45.

    Article  Google Scholar 

  8. Patyi G, Bo′dis A, Antal I, Vajna B, Nagy Zs, Marosi Gy. Thermal and spectroscopic analysis of inclusion complex of spironolactone prepared by evaporation and hot melt methods. J Therm Anal Chalorim. 2010;102:349–55.

    Article  CAS  Google Scholar 

  9. Lutka A. Investigation of interaction of promethazine with cyclodextrins in aqueous solution. Acta Pol Pharm. 2002;59:45–51.

    CAS  Google Scholar 

  10. Zielenkiewicz W, Koźbiał M, Golankiewicz B, Poznański J. Enhancement of aqueous solubility of tricyclic acyclovir derivatives by their complexation with hydroxypropyl-β-cyclodextrin. J Therm Anal Chalorim. 2010;101:555–60.

    Article  CAS  Google Scholar 

  11. Nisharani SR, Nilesh SK, Parth DM, Arati NR. Improvement of water solubility and in vitro dissolution rate of aceclofenac by complexation with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. Pharm Dev Technol. 2010;15:64–70.

    Article  Google Scholar 

  12. Mashru RC, Sutariya VB, Sankalia MG, Yagnakumar P. Characterization of solid dispersions of rofecoxib using differential scanning calorimeter. J Therm Anal Calorim. 2005;82:167–70.

    Article  CAS  Google Scholar 

  13. Tantishaiyakul V, Keawnopparat N, Ingkatawornwong S. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone. Int J Pharm. 1999;181:143–51.

    Article  CAS  Google Scholar 

  14. Papageorgiou GZ, Docoslis A, Georgarakis M, Bikiaris D. The effect of physical state on the drug dissolution rate. Miscibility studies of Nimodipine with PVP. J Therm Anal Chalorim. 2009;95:903–15.

    Article  CAS  Google Scholar 

  15. Taneri F, Güneri T, Aigner Z, Berkesi O, Kata M. Thermoanalytical studies on complexes of ketoconazole with cyclodextrin derivatives. J Therm Anal Calorim. 2003;74:769–77.

    Article  CAS  Google Scholar 

  16. Aigner Z, Hassan HB, Berkesi O, Kata M, Erős I. Thermoanalytical, FTIR and X-ray studies of gemfibrozil-cyclodextrin complexes. J Therm Anal Calorim. 2005;81:267–72.

    Article  CAS  Google Scholar 

  17. Fröming KH, Szejtli J. Cyclodextrins in pharmacy. Dordrecht: Kluwer Academic Publishers; 1994. p. 74.

    Google Scholar 

  18. Mura P, Faucci MT, Bettinetti GP. The influence of polyvinylpyrrolidone on naproxen complexation with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci. 2001;13:187–94.

    Article  CAS  Google Scholar 

  19. Kata M, Ambrus R, Aigner Z. Preparation and investigation of inclusion complexes containing nifluminic acid and cyclodextrins. J Incl Phenom. 2002;44:123–6.

    Article  CAS  Google Scholar 

  20. Valero M, Perez-Revuelta BJ, Rodríguez LJ. Effect of PVP K-25 on the formation of the naproxen-cyclodextrin complex. Int J Pharm. 2003;253:97–110.

    Article  CAS  Google Scholar 

  21. Ambrus R, Aigner Z, Berkesi O, Soica C, Szabó-Révész P. Determination of structural interaction of nifluminic acid-PVP solid dispersions. Rev Chim. 2006;57:1051–4.

    CAS  Google Scholar 

  22. Ambrus R, Aigner Z, Dehelean C, Szabó-Révész P. Physicochemical studies on solid dispersions of nifluminic acid prepared with PVP. Rev Chim. 2007;58:60–4.

    CAS  Google Scholar 

  23. Ambrus R, Aigner Z, Soica C, Peev C, Szabó-Révész P. Amorphisation of nifluminic acid with polyvinylpyrrolidone prepared solid dispersion to reach rapid drug release. Rev Chim. 2007;58:206–9.

    CAS  Google Scholar 

  24. Loftsson T, Frithriksdóttir H. The effect of water-soluble polymers on the aqueous solubility and complexing abilities of β-cyclodextrin. Int J Pharm. 1998;163:115–21.

    Article  CAS  Google Scholar 

  25. Loftsson T, Masson M, Sigurjonsdottir JF. Methods to enhance the complexation efficiency of cyclodextrins. STP Pharma Sci. 1999;9:237–42.

    CAS  Google Scholar 

  26. Esclusa-Diaz MT, Gayo-Otero M, Pérez-Marcos MB, Vila-Jato JL, Torres-Labandeira JJ. Preparation and evaluation of ketoconazole-β-cyclodextrin multicomponent complexes. Int J Pharm. 1996;142:183–7.

    Article  CAS  Google Scholar 

  27. Szente L, Szejtli J. Solution for insolubility problems of base-type drugs: multicomponent cyclodextrin complexation. In: Proceedings of 1st world meeting APGI/APV. Budapest; 1995.

  28. Granero G, Bertorello MM, Longhi M. Solubilization of a naphthoquinone derivative by hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and polyvinylpyrrolidone (PVP-K30). The influence of PVP-K30 and pH on solubilizing effect of HP-beta-CD. Boll Chim Farm. 2002;141:63–6.

    CAS  Google Scholar 

  29. Patel AR, Vavia PR. Effect of hydrophilic polymers on solubilization of fenofibrate by cyclodextrin complexation. J Incl Phenom. 2006;56:247–51.

    Article  CAS  Google Scholar 

  30. Patil JS, Kadam DV, Marapur SC, Kamalapur MV. Inclusion complex system; a novel technique to improve the solubility and bioavailability of poorly soluble drugs: a review. Int J Pharm Sci Rev Res. 2010;2(2):29–34.

    CAS  Google Scholar 

  31. Salomon JL, Doelker E. Formulation des comprimés à libération prolongée, I. Matrices inertes. Pharm Acta Helv. 1980;55:174–82.

    CAS  Google Scholar 

  32. Langenbucher F. Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol. 1972;24:979–89.

    CAS  Google Scholar 

  33. Socrates G. Infrared characteristic group frequencies—tables and charts. 2nd ed. Chichester: Wiley; 1994. p. 80.

    Google Scholar 

  34. Allen RI, Box KJ, Comer JEA, Peake C, Tam Y. Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. J Pharm Biomed Anal. 1998;17:699–712.

    Article  CAS  Google Scholar 

  35. Dannenfelser RM, Yalkowsky SH. Database for aqueous solubility of nonelectrolytes. Comput Appl Biosci. 1989;5:235–6.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by TÁMOP research project: Development of teranostics in cardiovascular, metabolics, and inflammatory diseases (TÁMOP-4.2.2-08/1-2008-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sorrenti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrus, R., Aigner, Z., Catenacci, L. et al. Physico-chemical characterization and dissolution properties of nifluminic acid-cyclodextrin-PVP ternary systems. J Therm Anal Calorim 104, 291–297 (2011). https://doi.org/10.1007/s10973-010-1069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1069-1

Keywords

Navigation