Skip to main content
Log in

Thermodynamic properties and heat capacities of Co (BTC)1/3 (DMF) (HCOO)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel metal organic framework [Co (BTC)1/3 (DMF) (HCOO)] n (CoMOF, BTC = 1,3,5-benzene tricarboxylate, DMF = N,N-dimethylformamide) has been synthesized solvothermally and characterized by single crystal X-ray diffraction, X-ray powder diffraction, and FT-IR spectra. The molar heat capacity of the compound was measured by modulated differential scanning calorimetry (MDSC) over the temperature range from 198 to 418 K for the first time. The thermodynamic parameters such as entropy and enthalpy versus 298.15 K based on the above molar heat capacity were calculated. Moreover, a four-step sequential thermal decomposition mechanism for the CoMOF was investigated through the thermogravimetry and mass spectrometer analysis (TG-DTG-MS) from 300 to 800 K. The apparent activation energy of the first decomposition step of the compound was calculated by the Kissinger method using experimental data of TG analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wong-Foy AG, Matzger AJ, Yaghi OM. Exceptional H-2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc. 2006;128:3494–5.

    Article  CAS  Google Scholar 

  2. Fletcher AJ, Thomas KM, Rosseinsky MJ. Flexibility in metal-organic framework materials: impact on sorption properties. J Solid State Chem. 2005;178:2491–510.

    Article  CAS  Google Scholar 

  3. Navarro JAR, Barea E, Salas JM, Masciocchi N, Galli S, Sironi A, et al. H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers. Inorg Chem. 2006;45:2397–9.

    Article  CAS  Google Scholar 

  4. Latroche M, Surble S, Serre C, Mellot-Draznieks C, Llewellyn PL, Lee JH, et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angewandte Chem-Int Ed. 2006;45:8227–31.

    Article  CAS  Google Scholar 

  5. Wu CD, Hu A, Zhang L, Lin WB. Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. J Am Chem Soc. 2005;127:8940–1.

    Article  CAS  Google Scholar 

  6. Chen BL, Liang CD, Yang J, Contreras DS, Clancy YL, Lobkovsky EB, et al. A microporous metal-organic framework for gas-chromatographic separation of alkanes. Angewandte Chem-Int Ed. 2006;45:1390–3.

    Article  CAS  Google Scholar 

  7. Jalbout AF, Li XH, Hassan MR, Hossain GMG. Construction of novel coordination polymers with simple ligands. Transit Met Chem. 2008;33:597–603.

    Article  CAS  Google Scholar 

  8. Reading M, Elliot D, Hill V. Some aspects of the theory and practise of modulated differential scanning calorimetry. In: Proceedings of the 21st North American Thermal Analysis Society Conference. 1992, pp. 145–50.

  9. Wunderlich B. The contributions of MDSC to the understanding of the thermodynamics of polymers. J Therm Anal Calorim. 2006;85:179–87.

    Article  CAS  Google Scholar 

  10. Chau J, Garlicka I, Wolf C, Teh J. Modulated DSC as a tool for polyethylene structure characterization. J Therm Anal Calorim. 2007;90:713–9.

    Article  CAS  Google Scholar 

  11. Qi YN, Xu F, Ma HJ, Sun LX, Zhang J, Jiang T. Thermal stability and glass transition behavior of PANI/gamma-Al2O3 composites. J Therm Anal Calorim. 2008;91:219–23.

    Article  CAS  Google Scholar 

  12. Qiu SJ, Chu HL, Zhang J, Qi YN, Sun LX, Xu F. Heat capacities and thermodynamic properties of CoPc and CoTMPP. J Therm Anal Calorim. 2008;91:841–8.

    Article  CAS  Google Scholar 

  13. Zhang J, Zeng JL, Liu YY, Sun LX, Xu F, You WS, et al. Thermal decomposition kinetics of the synthetic complex Pb(1, 4-BDC)center dot(DMF)(H2O). J Therm Anal Calorim. 2008;91:189–93.

    Article  CAS  Google Scholar 

  14. Sheldrick GM. SHELX97. Program for crystal structure refinement. 1997.

  15. Archer DG. Thermodynamic properties of synthetic sapphire (Alpha-Al2O3), Standard Reference Material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–53.

    Article  CAS  Google Scholar 

  16. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this study from the National Natural Science Foundation of China (No. 2083309, 20873148, 50671098 and U0734005), the National High Technology Research and Development Program of China (2007AA05Z115 and 2007AA05Z102), the National Basic Research Program (973 program) of China (2010CB631303), and IUPAC (Project No. 2008-006-3-100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Xian Sun or Fen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, CH., Song, LF., Zhang, J. et al. Thermodynamic properties and heat capacities of Co (BTC)1/3 (DMF) (HCOO). J Therm Anal Calorim 102, 1087–1093 (2010). https://doi.org/10.1007/s10973-010-0688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0688-x

Keywords

Navigation