Skip to main content
Log in

Influence of alkali metal sodium doping on the properties of potassium hydrogen phthalate (KHP) crystals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of doping sodium on the growth process and properties of potassium hydrogen phthalate (KHP) single crystals by slow evaporation solution growth technique has been investigated. Incorporation of sodium into the crystalline matrix even in the presence of low dopant concentration in aqueous growth medium is well confirmed by energy dispersive X-ray spectroscopy and quantified by atomic absorption spectroscopy and inductively coupled plasma emission spectrometer (ICP) techniques. The FT-IR spectral analysis confirms the slight distortion of the structure of the crystals as a result of doping. The TG-DTA studies reveal the purity of the material and no decomposition is observed up to the melting point. Low Na-doping (10 mol%) slightly increases the second harmonic generation efficiency, whereas heavy doping {[KHP]:[Na] = 1:1} results in significant enhancement. It has also been found that the doping results in morphological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jones JL, Paschen KW, Nicholson JB. J Appl Opt. 1963;2:955.

    CAS  Google Scholar 

  2. Yoda O, Miyashita A, Murakami K, Aoki S, Yamaguchi N. Proc SPIE Int Soc Opt Eng. 1991;1503:463.

    CAS  Google Scholar 

  3. Miniewicz A, Bartkiewicz S. Adv Mater Opt Electron. 1993;2:157.

    Article  CAS  Google Scholar 

  4. Kejalakshmy N, Srinivasan K. Opt Mater. 2004;27:389.

    Article  CAS  Google Scholar 

  5. Shankar MV, Varma KBR. Ferroelectrics Lett Sec. 1996;21:55.

    Article  CAS  Google Scholar 

  6. Okaya Y. Acta Crytallogr. 1965;19:879.

    Article  CAS  Google Scholar 

  7. Hottenhuis MHJ, Gardeniers JGE, Jetien LAMJ, Bennema P. J Cryst Growth. 1988;92:171.

    Article  CAS  Google Scholar 

  8. Nisoli M, Pruneri V, Magni V, De Silvestri S, Dellepiane G, Cuniberti DC, et al. Appl Phys Lett. 1994;65:590.

    Article  CAS  Google Scholar 

  9. Timpanaro S, Sassella A, Borghesi A, Porzio W, Fountaine P, Goldmann M. Adv Mater. 2001;13:127.

    Article  CAS  Google Scholar 

  10. Van Enckevort WJP, Jetten LAMJ. J Cryst Growth. 1982;60:275.

    Article  Google Scholar 

  11. Ester GR, Price R, Halfpenny PJ. J Cryst Growth. 1997;182:95.

    Article  CAS  Google Scholar 

  12. Murugakoothan P, Mohankumar R, Ushashree PM, Jayavel R, Dhanasekaran R, Ramasamy P. J Cryst Growth. 1999;207:325.

    Article  CAS  Google Scholar 

  13. Hottenhuis MHJ, Oudenampsen A. J Cryst Growth. 1988;92:513.

    Article  CAS  Google Scholar 

  14. Hottenhuis MHJ, Lucasius CB. J Cryst Growth. 1986;78:379.

    Article  CAS  Google Scholar 

  15. Hottenhuis MHJ, Lucasius CB. J Cryst Growth. 1988;91:623.

    Article  CAS  Google Scholar 

  16. Hottenhuis MHJ, Lucasius CB. J Cryst Growth. 1989;94:708.

    Article  CAS  Google Scholar 

  17. Sabharwal S. J Cryst Growth. 1998;187:253.

    Article  CAS  Google Scholar 

  18. Torstolytkin AI, Kotor VV, Belous AG. Funct Mater. 2004;11:122.

    Google Scholar 

  19. Alessandri I, Bontempi E, Sangaletti L, Pagliara S, Malavasi L, Parmigiani F, et al. J Phys IV France. 2004;118:165.

    Article  CAS  Google Scholar 

  20. Geetha SK, Perumal R, Moorthy Babu S, Anbarasan PM. Cryst Res Technol. 2006;41:221.

    Article  CAS  Google Scholar 

  21. Meenakshisundaram S, Parthiban S, Sarathi N, Kalavathy R, Bhagavannarayana G. J Cryst Growth. 2006;293:376.

    Article  CAS  Google Scholar 

  22. Bhagavannarayana G, Parthiban S, Meenakshisundaram S. Cryst Growth Des. 2007;8:446.

    Article  Google Scholar 

  23. Bhagavannarayana G, Kushwaha SK, Parthiban S, Meenakshisundaram S. J Cryst Growth. 2009;311:960.

    Article  CAS  Google Scholar 

  24. Torres ME, López T, Stockel J, Solans X, Vallés MG, Castellón ER, et al. J Solid State Chem. 2002;163:491.

    Article  CAS  Google Scholar 

  25. Shi ZM, Yan L, Jin LN, Lu XM, Zhao G. J Non-Cryst Solids. 2007;353:2171.

    Article  CAS  Google Scholar 

  26. Kuznetsov VA, Okhrimenko JM, Rak M. J Cryst Growth. 1998;193:164.

    Article  CAS  Google Scholar 

  27. Kurtz SK, Perry TT. J Appl Phys. 1968;39:3798.

    Article  CAS  Google Scholar 

  28. Lal K, Bhagavannarayana G. J Appl Crystallogr. 1989;22:209.

    Article  CAS  Google Scholar 

  29. Vasudevan G, Anbusrinivasan P, Madhurambal G, Mojumdar SC. J Therm Anal Calorim. 2009;96:99.

    Article  CAS  Google Scholar 

  30. Meenakshisundaram SP, Parthiban S, Madhurambal G, Mojumdar SC. J Therm Anal Calorim. 2008;94:21.

    Article  CAS  Google Scholar 

  31. Rak M, Eremin NN, Eremina TA, Kuznetsov VA, Okhrimenko TM, Furmanova NG, et al. J Cryst Growth. 2005;273:577.

    Article  CAS  Google Scholar 

  32. Wang Y, Eaton DF. Chem Phys Lett. 1985;120:441.

    Article  CAS  Google Scholar 

  33. Shannon RD. Acta Crystallogr A. 1976;32:751.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Mojumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasamy, G., Parthiban, S., Meenakshisundaram, S.P. et al. Influence of alkali metal sodium doping on the properties of potassium hydrogen phthalate (KHP) crystals. J Therm Anal Calorim 100, 861–865 (2010). https://doi.org/10.1007/s10973-010-0678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0678-z

Keywords

Navigation