Skip to main content
Log in

Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Sol–gel auto combustion process was employed to synthesize nanosized Mn–Zn ferrite at different pH values (<1, 5, 6, 7, 8 and 10). Although self propagating combustion behavior of gel was noted at pH 5 but more effective combustion was observed at pH 6. The smoldering effect was observed in gel prepared at pH 7, 8 and 10, whereas pH < 1 showed localized burning. Thermogravimetric (TG) and X-ray diffraction (XRD) analyses were done to investigate the effect of pH on the combustion behavior, particle size and the formation of desired magnetic (spinel) phase. From TG curves of burnt powders, activation energy of ignition reaction at each pH value was calculated. The results showed that fuel to oxidant ratio and the amount of gel residuals decided the value of activation energy required to further purify the burnt powders. Calcination parameters (time and temperature in air) of powders P1 and P6 synthesized at pH < 1 and pH 6 were also determined. B–H loop results showed that calcined powder C6 was more ferromagnetic than C1 due to fully developed spinel phase and larger particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arulmurugan R, Vaidyanathan G, Sendhilnathan S, Jeyadevan B. Mn–Zn ferrite nanoparticles for ferrofluid preparation: study on thermal–magnetic properties. J Magn Mag Mater. 2006;298:83–94.

    Article  CAS  Google Scholar 

  2. Levy D, Hoser A. Cation distribution in synthetic zinc ferrite (Zn0.97Fe2.02O4) from in situ high-temperature neutron powder diffraction. Am Mineral. 2000;85:1497–502.

    Google Scholar 

  3. Tangsali RB, Keluskar SH, Niak GK, Budkuley JS. Effect of sintering conditions on resistivity of nanoparticle Mn–Zn ferrite prepared by nitrilotriacetate precursor method. J Mater Sci. 2007;42:878–82.

    Article  CAS  Google Scholar 

  4. Ahns SJ, Yoon CS, Yoon SG, Kim CK, Byun TY, Hong KS. Domain structure of polycrystalline MnZn ferrites. Mater Sci Eng B. 2001;84:146–54.

    Article  Google Scholar 

  5. Parekh K, Upadhyay RV, Belova L. Ternary monodispersed Mn0.5Zn0.5Fe2O4 ferrite nanoparticles: preparation and magnetic characterization. Nanotechnology. 2006;17:5970–5.

    Article  CAS  Google Scholar 

  6. Botta PM, Bercoff PG, Aglietti EF, Bertorello HR, Lopez JMP. Two alternative synthesis routes for Mn–Zn ferrites using mechanochemical treatments. Ceram Inter. 2006;32:857–63.

    Article  CAS  Google Scholar 

  7. Rosales MI, Plata AM, Nicho ME, Brito A, Ponce MA. Effect of sintering conditions on microstructure and magnetic properties of Mn–Zn ferrites. J Mater Sci. 1995;30:4446–50.

    Article  CAS  Google Scholar 

  8. Ding J, McCormick PG, Street R. Formation of spinel Mn–ferrite during mechanical alloying. J Magn Mag Mater. 1997;171:309–14.

    Article  CAS  Google Scholar 

  9. Qureshi AH. The influence of hafnia and impurities (CaO/SiO2) on the microstructure and magnetic properties of Mn–Zn ferrites. J Cryst Growth. 2006;286:365–70.

    Article  CAS  Google Scholar 

  10. Azadmanjiri J. Preparation of Mn–Zn ferrite nanoparticles from chemical sol–gel combustion method and the magnetic properties after sintering. J Non Cryst Solids. 2007;353:4170−3.

    Article  CAS  Google Scholar 

  11. Mandal K, Mandal SP, Agudo P, Pal M. A study of nanocrystalline (Mn–Zn) ferrite in SiO2 matrix. Appl Surf Sci. 2001;182:386–9.

    Article  CAS  Google Scholar 

  12. Azadmanjiri J, Seyyed Ebrahimi SA. The effect of pH and citric acid concentration on the characterization of nanocrystalline NiFe2O4 powder synthesized by a sol–gel autocombustion method. Phys Metals Metallogr. 2006;102:S21–3.

    Article  Google Scholar 

  13. Azadmanjiri J, Salehani HK, Barati MR, Farzan F. Preparation and electromagnetic properties of Ni1−xCuxFe2O4 nanoparticle ferrites by sol–gel auto-combustion method. Mater Lett. 2007;61:84–7.

    Article  CAS  Google Scholar 

  14. Zhang ZJ, Wang ZL, Chakoumakos BC, Yin JS. Temperature dependence of cation distribution and oxidation state in magnetic Mn−Fe ferrite. J Am Chem Soc. 1998;120:1800–4.

    Article  CAS  Google Scholar 

  15. Wang H, Kung S. Crystallization of nanosized Ni–Zn ferrite powders prepared by hydrothermal method. J Magn Mag Mater. 2004;270:230–6.

    Article  CAS  Google Scholar 

  16. Wang XH, Li XJ, Yan HH, Qu YD, Sun GL, Xie XH, et al. Research on thermal decomposition kinetic characteristic of emulsion explosive base containing Fe and Mn elements. J Therm Anal Calorim. 2008;91:545–50.

    Article  CAS  Google Scholar 

  17. Rane KS, Uskaikar H, Pednekar R, Mhalsikar R. The low temperature synthesis of metal oxides by novel hydrazine method. J Therm Anal Calorim. 2007;90:627–38.

    Article  CAS  Google Scholar 

  18. Xavier CS, Candeia RA, Bernardi MIB, Lima SJG, Longo E, Paskocimas CA, et al. Effect of the modifier ion on the properties of MgFe2O4 and ZnFe2O4 pigments. J Therm Anal Calorim. 2007;87:709–13.

    Article  CAS  Google Scholar 

  19. Silva MRS, De Miranda LCO, Cassia-Santos MR, Lima SJG, Soledade LEB, Longo E, et al. Influence of the network former on the properties of magnesium spinels. J Therm Anal Calorim. 2007;87:753–7.

    Article  CAS  Google Scholar 

  20. Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal Chem. 1963;35:1465–8.

    Article  Google Scholar 

  21. Zyrichev NA, Shlenskii OF. Kinetics of decomposition of hydrated nitrates by short contact time plasma heating. High Energy Chem. 2000;34:46–52.

    Google Scholar 

  22. Singh G, Singh CP, Frohlich R. Preparation, characterization and thermolysis of metal nitrate complexes with 4,4′-bipyridine. J Therm Anal Calorim. 2006;85:425–31.

    Article  CAS  Google Scholar 

  23. Singh G, Baranwal BP, Kapoor IPS, Kumar D, Singh CP, Frohlich R. Transition metal nitrate complexes with hexamethylenetetramine. J Therm Anal Calorim. 2008;91:971–7.

    Article  CAS  Google Scholar 

  24. Qureshi AH, Arshad M, Durrani SK, Waqas H. Impact of Pb substitution on the formation of high Tc superconducting phase in BSCCO system derived through sol–gel process. J Therm Anal Calorim. 2008;94:175–80.

    Article  CAS  Google Scholar 

  25. Tomar MS, Singh SP, Perez OP, Guzman RP, Calderonc E, Ramo CR. Microelectron synthesis and magnetic behavior of nanostructured ferrites for spintronics. Microelectron J. 2005;36:475–9.

    Article  CAS  Google Scholar 

  26. Makovec D, Kodre EA, Arcon I, Drofenik M. Non-stoichiometric zinc–ferrite spinel nanoparticles. J Nanopart Res. 2008;10:131–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Pakistan Higher Education Commission (HEC) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Waqas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waqas, H., Qureshi, A.H. Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process. J Therm Anal Calorim 98, 355–360 (2009). https://doi.org/10.1007/s10973-009-0289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0289-8

Keywords

Navigation