Skip to main content
Log in

Thermogravimetry/mass spectrometry analysis of energy crops

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this work was to study the thermal decomposition of different plant species obtained from energy plantations. Thermogravimetry/ mass spectrometry (TG/MS) experiments have been performed with two herbaceous crops (Miscanthus sinensis, pelletized energy grass) and two wood samples (willow, water locust) in inert and oxidative atmospheres. Owing to the large number of data obtained in the experiments, a chemometric tool, principal component analysis (PCA) has been used to help the interpretation of the results. It has been found that the thermal decomposition of the studied wood species is similar, whereas that of the studied herbaceous samples exhibits significant differences. PCA has been found to be useful for finding correlations between the various experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Demirbaş (2001) Energy Convers. Manage. 42 1357 Occurrence Handle10.1016/S0196-8904(00)00137-0

    Article  Google Scholar 

  2. AV Bridgwater et al. (1984) Thermochemical Processing of Biomass Butterworths London 35

    Google Scholar 

  3. P Szabó G Várhegyi F Till O Faix (1996) J. Anal. Appl. Pyrol. 36 179 Occurrence Handle10.1016/0165-2370(96)00931-X

    Article  Google Scholar 

  4. L Nunez-Reguiera JA Rodriguez-Anon J Proupin B Mourino R Artiaga-Diaz (2005) J. Therm. Anal. Cal. 80 457 Occurrence Handle10.1007/s10973-005-0677-7 Occurrence Handle1:CAS:528:DC%2BD2MXjvVCmsLs%3D

    Article  CAS  Google Scholar 

  5. C Erlich E Bjornbom D Bolado M Giner TH Fransson (2006) Fuel 85 1535 Occurrence Handle10.1016/j.fuel.2005.12.005 Occurrence Handle1:CAS:528:DC%2BD28XjtVKitL4%3D

    Article  CAS  Google Scholar 

  6. MG Grønli G Várhegyi C DiBlasi (2002) Ind. Eng. Chem. Res. 41 4201 Occurrence Handle10.1021/ie0201157 Occurrence Handle1:CAS:528:DC%2BD38XlsFKmsb4%3D

    Article  CAS  Google Scholar 

  7. J Kaloustian AM Pauli J Pastor (1998) J. Therm. Anal.Cal. 53 57 Occurrence Handle10.1023/A:1010153806810 Occurrence Handle1:CAS:528:DyaK1cXns1ans78%3D

    Article  CAS  Google Scholar 

  8. Å Ingemarsson M Nilsson JR Pedersen JO Olsson (1999) Chemosphere 39 103 Occurrence Handle10.1016/S0045-6535(98)00592-X Occurrence Handle1:CAS:528:DyaK1MXjs12gu7Y%3D

    Article  CAS  Google Scholar 

  9. K Senelwa REH Sims (1999) Biomass Bioenerg. 17 127 Occurrence Handle10.1016/S0961-9534(99)00035-5

    Article  Google Scholar 

  10. I Laureysens W Deraedt T Indeherberge R Ceulemans (2003) Biomass Bioenerg. 24 81 Occurrence Handle10.1016/S0961-9534(02)00105-8

    Article  Google Scholar 

  11. E Mészáros E Jakab G Várhegyi P Szepesváry B Marosvölgyi (2004) J. Anal. Appl. Pyrol. 72 317 Occurrence Handle10.1016/j.jaap.2004.07.009 Occurrence Handle1:CAS:528:DC%2BD2cXpsFSjs7o%3D

    Article  CAS  Google Scholar 

  12. G Skodras OP Grammelis P Balinas E Karakas G Sakellaropoulos (2006) Ind. Eng. Chem. Res. 45 3791 Occurrence Handle10.1021/ie060107g Occurrence Handle1:CAS:528:DC%2BD28XjvFKqtr4%3D

    Article  CAS  Google Scholar 

  13. G Várhegyi E Jakab F Till T Székely (1989) Energ. Fuel 3 755 Occurrence Handle10.1021/ef00018a017

    Article  Google Scholar 

  14. M Wesołowski P Konieczyński (2003) Thermochim. Acta 397 171 Occurrence Handle10.1016/S0040-6031(02)00319-2

    Article  Google Scholar 

  15. T Adam T Ferge S Mitschke T Streibel RR Baker R Zimmermann (2005) Anal. Bioanal. Chem. 381 487 Occurrence Handle15599713 Occurrence Handle10.1007/s00216-004-2935-0 Occurrence Handle1:CAS:528:DC%2BD2MXht1Krtbw%3D

    Article  PubMed  CAS  Google Scholar 

  16. H Yokoi T Nakase Y Ishida H Ohtani S Tsuge T Sonoda T Ona (2001) J. Anal. Appl. Pyrolysis 57 145 Occurrence Handle10.1016/S0165-2370(00)00137-6 Occurrence Handle1:CAS:528:DC%2BD3cXovFSmu7o%3D

    Article  CAS  Google Scholar 

  17. S Kokot P Yang (1995) Anal. Chim. Acta 304 297 Occurrence Handle10.1016/0003-2670(94)00637-2 Occurrence Handle1:CAS:528:DyaK2MXks1Khs7w%3D

    Article  CAS  Google Scholar 

  18. M Statheropoulos K Mikedi N Tzamtzis A Pappa (2002) Anal. Chim. Acta 461 215 Occurrence Handle10.1016/S0003-2670(02)00235-0 Occurrence Handle1:CAS:528:DC%2BD38XktFOht78%3D

    Article  CAS  Google Scholar 

  19. M Statheropoulos K Mikedi (2001) Anal. Chim. Acta 446 353 Occurrence Handle10.1016/S0003-2670(01)01097-2 Occurrence Handle1:CAS:528:DC%2BD3MXotFynsbo%3D

    Article  CAS  Google Scholar 

  20. E Mészáros G Várhegyi E Jakab B Marosvölgyi (2004) Energ. Fuel 18 497 Occurrence Handle10.1021/ef034030+ Occurrence Handle1:CAS:528:DC%2BD2cXmtlWiuw%3D%3D

    Article  CAS  Google Scholar 

  21. R Kataki D Konwer (2001) Biomass Bioenerg. 20 17 Occurrence Handle10.1016/S0961-9534(00)00060-X Occurrence Handle1:CAS:528:DC%2BD3MXhslKhsbw%3D

    Article  CAS  Google Scholar 

  22. H Hafizoglu M Usta Ö Bilgin (1997) Holzforschung 51 114 Occurrence Handle1:CAS:528:DyaK2sXltFOqtbg%3D Occurrence Handle10.1515/hfsg.1997.51.2.114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Mészáros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mészáros, E., Jakab, E., Várhegyi, G. et al. Thermogravimetry/mass spectrometry analysis of energy crops. J Therm Anal Calorim 88, 477–482 (2007). https://doi.org/10.1007/s10973-006-8102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8102-4

Keywords

Navigation