Skip to main content
Log in

Heat capacity and phase behavior of {C6E4+water} solutions by DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The specific heat capacities of {2-(hexyloxytriethoxy)ethanol (C6E4)+water} system have been measured from 280 to 333 K within the whole composition range by DSC. Changes of specific, apparent and partial molar heat capacities of investigated aqueous solution vs. composition and temperature, considered as an effect of structural transformations were analyzed in order to draw boundary between region where amphiphile molecules occur as monomers and small aggregates and the area in which the first micelles appear. For each solution, the temperature dependences of the differential heat flow were analyzed in order to find the curve of phase coexistence, i.e. the boundary between one- and two-phase areas for the examined system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Roux G Perron JE Desnoyers (1978) J. Solution Chem. 7 639 Occurrence Handle1:CAS:528:DyaE1MXivFyruw%3D%3D Occurrence Handle10.1007/BF00652015

    Article  CAS  Google Scholar 

  2. S Smith P Wiseman L Boudreau G Marangoni R Palepu (1994) J. Solution Chem. 23 207 Occurrence Handle1:CAS:528:DyaK2cXivVWjsrY%3D Occurrence Handle10.1007/BF00973547

    Article  CAS  Google Scholar 

  3. U Kaatze B Gabriel R Pottel (1994) Ber. Bunsen-ges. Phys. Chem. 98 9 Occurrence Handle1:CAS:528:DyaK2cXitVKhtbk%3D Occurrence Handle10.1002/bbpc.19940980103

    Article  CAS  Google Scholar 

  4. G Douhéret A Pal MI Davis (1989) J. Chem. Soc., Faraday Trans. 1, 85 2723 Occurrence Handle10.1039/f19898502723

    Article  Google Scholar 

  5. G Douhéret AH Roux MI Davis ME Hernandez H Høiland E Høgseth (1993) J. Solution Chem. 22 1041 Occurrence Handle10.1007/BF00647728

    Article  Google Scholar 

  6. G Douhéret C Salgado MI Davis J Loya (1992) Thermochim. Acta 207 313 Occurrence Handle10.1016/0040-6031(92)80145-M

    Article  Google Scholar 

  7. L Paduano R Sartorio V Vitagliano L Constantino (1997) J. Colloid Interface Sci. 189 189 Occurrence Handle1:CAS:528:DyaK2sXjslSgtro%3D Occurrence Handle10.1006/jcis.1997.4808

    Article  CAS  Google Scholar 

  8. L Ambrosone L Constantino G D’Errico V Vitagliano (1997) J. Colloid Interface Sci. 190 286 Occurrence Handle1:CAS:528:DyaK2sXktlShu70%3D Occurrence Handle10.1006/jcis.1997.4860

    Article  CAS  Google Scholar 

  9. SA Wieczorek (2000) J. Chem. Thermodynamics 32 529 Occurrence Handle1:CAS:528:DC%2BD3cXit1CmsL4%3D Occurrence Handle10.1006/jcht.1999.0621

    Article  CAS  Google Scholar 

  10. H Piekarski M Tkaczyk M Wasiak (2005) J. Therm. Anal. Cal. 82 711 Occurrence Handle1:CAS:528:DC%2BD28XjsFGjug%3D%3D Occurrence Handle10.1007/s10973-005-0954-5

    Article  CAS  Google Scholar 

  11. H Piekarski M Tkaczyk (2005) Thermochim. Acta 428 113 Occurrence Handle1:CAS:528:DC%2BD2MXitlShsbs%3D Occurrence Handle10.1016/j.tca.2004.11.001

    Article  CAS  Google Scholar 

  12. T Telgmann U Kaatze (2000) J. Phys. Chem. A 104 4846 Occurrence Handle1:CAS:528:DC%2BD3cXivVWht70%3D Occurrence Handle10.1021/jp994159d

    Article  CAS  Google Scholar 

  13. K-V Schubert R Strey M Kahlweit (1991) J. Colloid Interface Sci 141 21 Occurrence Handle1:CAS:528:DyaK3MXosVehtQ%3D%3D Occurrence Handle10.1016/0021-9797(91)90298-M

    Article  CAS  Google Scholar 

  14. T Telgmann U Kaatze (2000) J. Phys. Chem. A 104 1085 Occurrence Handle1:CAS:528:DC%2BD3cXlsl2rsw%3D%3D Occurrence Handle10.1021/jp9923116

    Article  CAS  Google Scholar 

  15. R Strey (1996) Ber. Bunsen-ges. Phys. Chem. 100 182 Occurrence Handle1:CAS:528:DyaK28Xis1egu7o%3D Occurrence Handle10.1002/bbpc.19961000303

    Article  CAS  Google Scholar 

  16. M Corti C Minero V Degiorgio (1984) J. Phys. Chem. 88 309 Occurrence Handle1:CAS:528:DyaL2cXktVSktA%3D%3D Occurrence Handle10.1021/j150646a029

    Article  CAS  Google Scholar 

  17. M Kahlweit R Strey P Firman D Haase J Jen R Schomäcker (1988) Langmuir 4 499 Occurrence Handle1:CAS:528:DyaL1cXitFSltrw%3D Occurrence Handle10.1021/la00081a002

    Article  CAS  Google Scholar 

  18. MN Garcia-Lisbona A Galindo G Jackson AN Burgess (1998) J. Am. Chem. Soc. 120 4191 Occurrence Handle1:CAS:528:DyaK1cXis12msr0%3D Occurrence Handle10.1021/ja9736525

    Article  CAS  Google Scholar 

  19. L Wojtczak H Piekarski M Tkaczyk I Zasada T Rychtelska (2002) J. Mol. Liquids 95 229 Occurrence Handle1:CAS:528:DC%2BD38XhsFantr0%3D Occurrence Handle10.1016/S0167-7322(01)00290-2

    Article  CAS  Google Scholar 

  20. P Jablonski A Müller-Blecking W Borchard (2003) J. Therm. Anal. Cal. 74 779. Occurrence Handle10.1023/B:JTAN.0000011010.84094.90

    Article  Google Scholar 

  21. JJ Moura Ramos CAM Afonso LC Branco (2003) J. Therm. Anal. Cal. 71 659 Occurrence Handle1:CAS:528:DC%2BD3sXitVynsb0%3D Occurrence Handle10.1023/A:1022884716750

    Article  CAS  Google Scholar 

  22. P Góralski M Tkaczyk M Chorążewski (2003) J. Chem. Eng. Data 48 492 Occurrence Handle10.1021/je020042y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piekarski H..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piekarski, H., Tkaczyk, M. Heat capacity and phase behavior of {C6E4+water} solutions by DSC . J Therm Anal Calorim 83, 541–547 (2006). https://doi.org/10.1007/s10973-005-7496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7496-8

Keywords

Navigation