Skip to main content
Log in

Using thermally activated hydrotalcite for the uptake of phosphate from aqueous media

  • Regular Papers
  • Material Sciences/Kinetics/Geosciences
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hydrotalcites of formula Mg6A12(OH)16(PO4)·4H2O formed by intercalation with the phosphate anion as a function of pH show variation in the d-spacing attributed to the size of the hydrated anion in the interlayer. The value changes from 11.91 Å for pH 9.3, to 7.88 Å at pH 12.5. No crystalline hydrotalcites with phosphate in the interlayer were formed at pH 9.3. Thermal decomposition identifies three steps namely dehydration, dehydroxylation and some loss of carbonate during the thermal treatment. The addition of a thermally activated ZnAl-HT to a phosphate solution resulted in the uptake of the phosphate and the reformation of the hydrotalcite. The technology has the potential for water purification through anion removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. K. Hashi, S. Kikkawa and M. Koizumi, Clays Clay Miner., 31 (1983) 152.

    Article  CAS  Google Scholar 

  2. L. Ingram and H. F. W. Taylor, Mineralogical Magazine and Journal of the Mineralogical Society (1876–1968), 36 (1967) 465.

    Article  CAS  Google Scholar 

  3. J. T. Kloprogge, L. Hickey and R. L. Frost, Mater. Chem. Phys., 89 (2005) 99.

    Article  CAS  Google Scholar 

  4. L. Frost Ray and L. Erickson Kristy, Spectrochim. Acta, Part A, 61 (2005) 51.

    Article  CAS  Google Scholar 

  5. K. L. Erickson, T. E. Bostrom and R. L. Frost, Mater. Lett., 59 (2004) 226.

    Article  CAS  Google Scholar 

  6. R. L. Frost and K. L. Erickson, J. Therm. Anal. Cal., 76 (2004) 217.

    Article  CAS  Google Scholar 

  7. R. L. Frost and K. L. Erickson, Thermochim. Acta, 421 (2004) 51.

    Article  CAS  Google Scholar 

  8. J. T. Kloprogge, L. Hickey and R. L. Frost, J. Raman Spectrosc., 35 (2004) 967.

    Article  CAS  Google Scholar 

  9. J. T. Kloprogge, L. Hickey and R. L. Frost, J. Sol. State Chem., 177 (2004) 4047.

    Article  CAS  Google Scholar 

  10. R. L. Frost and Z. Ding, Thermochim. Acta, 405 (2003) 207.

    Article  CAS  Google Scholar 

  11. R. L. Frost, W. Martens, Z. Ding and J. T. Kloprogge, J. Therm. Anal. Cal., 71 (2003) 429.

    Article  CAS  Google Scholar 

  12. R. L. Frost, M. L. Weier, M. E. Clissold and P. A. Williams, Spectrochim. Acta, Part A, 59 (2003) 3313.

    Article  CAS  Google Scholar 

  13. R. L. Frost, M. L. Weier, M. E. Clissold, P. A. Williams and J. T. Kloprogge, Thermochim. Acta, 407 (2003) 1.

    Article  CAS  Google Scholar 

  14. R. L. Frost, M. L. Weier and J. T. Kloprogge, J. Raman Spectrosc., 34 (2003) 760.

    Article  CAS  Google Scholar 

  15. R. M. Taylor, Clay Minerals, 17 (1982) 369.

    Article  CAS  Google Scholar 

  16. H. F. W. Taylor, Mineralogical Magazine and Journal of the Mineralogical Society, (1876–1968) 37 (1969) 338.

    Article  CAS  Google Scholar 

  17. H. C. B. Hansen and C. B. Koch, Appl. Clay Sci., 10 (1995) 5.

    Article  CAS  Google Scholar 

  18. D. L. Bish and A. Livingstone, Mineralogical Magazine, 44 (1981) 339.

    Article  CAS  Google Scholar 

  19. E. H. Nickel and R. M. Clarke, Am. Mineral., 61 (1976) 366.

    CAS  Google Scholar 

  20. E. Horváth, J. Kristóf, R. L. Frost, N. Heider and V. Vágvölgyi, J. Therm. Anal. Cal., 78 (2004) 687.

    Article  Google Scholar 

  21. R. L. Frost, M. L. Weier and K. L. Erickson, J. Therm. Anal. Cal., 76 (2004) 1025.

    Article  CAS  Google Scholar 

  22. R. L. Frost and K. L. Erickson, J. Therm. Anal. Cal., 78 (2004) 367.

    Article  CAS  Google Scholar 

  23. E. Horváth, J. Kristóf, R. L. Frost, A. Rédey, V. Vágvölgyi and T. Cseh, J. Therm. Anal. Cal., 71 (2003) 707.

    Article  Google Scholar 

  24. J. Kristóf, R. L. Frost, J. T. Kloprogge, E. Horváth and E. Makó, J. Therm. Anal. Cal., 69 (2002) 77.

    Article  Google Scholar 

  25. F. Rey, V. Fornes and J. M. Rojo, J. Chem. Soc., Faraday Trans., 88 (1992) 2233.

    Article  CAS  Google Scholar 

  26. M. Valcheva-Traykova, N. Davidova and A. Weiss, J. Mater. Sci., 28 (1993) 2157.

    Article  CAS  Google Scholar 

  27. G. Lichti and J. Mulcahy, Chem. Aust., 65 (1998) 10.

    CAS  Google Scholar 

  28. Y. Seida and Y. Nakano, J. Chem. Eng. Jpn., 34 (2001) 906.

    Article  CAS  Google Scholar 

  29. Y. Roh, S. Y. Lee, M. P. Elless and J. E. Foss, Clays Clay Miner., 48 (2000) 266.

    Article  CAS  Google Scholar 

  30. Y. Seida, Y. Nakano and Y. Nakamura, Water Res., 35 (2001) 2341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, R.L., Musumeci, A.W., Adebajo, M.O. et al. Using thermally activated hydrotalcite for the uptake of phosphate from aqueous media. J Therm Anal Calorim 89, 95–99 (2007). https://doi.org/10.1007/s10973-005-7478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7478-x

Keywords