Skip to main content
Log in

In situ infrared spectroscopic ellipsometry as a tool to probe the formation of sol–gel based mesoporous films

  • Invited Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Probing the formation of sol–gel mesoporous films and characterizing them under environmental/in-operando conditions represents an important challenge to optimize their performances. Obtaining a complete picture of the system usually requires a combination of multiple techniques. In this work, we introduce in situ infrared (IR) ellipsometry equipped with an environmental chamber as a tool to follow simultaneously the evolution of structural, optical and chemical properties during the formation of sol–gel derived mesoporous films. As a case study, we investigate the formation of mesoporous TiO2 by comparing a conventional thermal treatment and a low-temperature annealing by UV irradiation. In both cases, the structural optical and chemical evolution could be monitored during the IR ellipsometric experiment. Interestingly, UV-annealing allows the fabrication of mesoporous TiO2 films at low temperatures enabling the formation of plasmonic mesoporous composites. At last, we critically discuss the advantages and drawbacks of IR ellipsometry for in situ investigations compared to conventional UV–visible ellipsometry by providing additional insights for future developments.

Graphical Abstract

Using Infrared ellipsometry to probe the structural, optical and chemical evolution during the formation of sol–gel derived mesoporous films.

Highlights

  • IR ellipsometry is used to characterize the formation of TiO2 based mesoporous films.

  • Structural, optical and chemical evolutions can be investigated during thermal or UV treatments.

  • UV-annealing is well suited to fabricate composite plasmonic mesoporous films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15(35-36):3559–3592. https://doi.org/10.1039/B509097K

    Article  CAS  Google Scholar 

  2. Faustini M, Nicole L, Boissiere C, Innocenzi P, Sanchez C, Grosso D (2010) Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells. Chem Mater 22(15):4406–4413. https://doi.org/10.1021/cm100937e

    Article  CAS  Google Scholar 

  3. Pénard A-L, Gacoin T, Boilot J-P (2007) Functionalized sol–gel coatings for optical applications. Acc Chem Res 40(9):895–902. https://doi.org/10.1021/ar600025j

    Article  CAS  Google Scholar 

  4. Odziomek M, Thorimbert F, Boissiere C, Drisko GL, Parola S, Sanchez C, Faustini M (2022) Periodic nanoporous inorganic patterns directly made by self-ordering of cracks. Adv Mater 34(36):2204489

    Article  CAS  Google Scholar 

  5. Li R, Boudot M, Boissière C, Grosso D, Faustini M (2017) Suppressing structural colors of photocatalytic optical coatings on glass: the critical role of SiO2. ACS Appl Mater Interfaces 9(16):14093–14102. https://doi.org/10.1021/acsami.7b02233

    Article  CAS  Google Scholar 

  6. Faustini M, Grenier A, Naudin G, Li R, Grosso D (2015) Ultraporous nanocrystalline TiO2-based films: synthesis, patterning and application as anti-reflective, self-cleaning, superhydrophilic coatings. Nanoscale 7(46):19419–19425. https://doi.org/10.1039/C5NR06466J

    Article  CAS  Google Scholar 

  7. Grosso D, Boissière C, Sanchez C (2007) Ultralow-dielectric-constant optical thin films built from magnesium oxyfluoride vesicle-like hollow nanoparticles. Nat Mater 6(8):572–575

    Article  CAS  Google Scholar 

  8. Gayrard M, Voronkoff J, Boissière C, Montero D, Rozes L, Cattoni A, Péron J, Faustini M (2021) Replacing metals with oxides in metal-assisted chemical etching enables direct fabrication of silicon nanowires by solution processing. Nano Lett 21(5):2310–2317

    Article  CAS  Google Scholar 

  9. Neu V, Schulze C, Faustini M, Lee J, Makarov D, Suess D, Kim SK, Grosso D, Schultz L, Albrecht M (2013) Probing the energy barriers and magnetization reversal processes of nanoperforated membrane based percolated media. Nanotechnology 24 (14) https://doi.org/10.1088/0957-4484/24/14/145702

  10. Faustini M, Drisko GL, Letailleur AA, Montiel RS, Boissiere C, Cattoni A, Haghiri-Gosnet AM, Lerondel G, Grosso D (2013) Self-assembled titanium calcium oxide nanopatterns as versatile reactive nanomasks for dry etching lithographic transfer with high selectivity. Nanoscale 5(3):984–990. https://doi.org/10.1039/c2nr33341d

    Article  CAS  Google Scholar 

  11. Grobis M, Schulze C, Faustini M, Grosso D, Hellwig O, Makarov D, Albrecht M (2011) Recording study of percolated perpendicular media. Appl Phys Lett 98 (19) https://doi.org/10.1063/1.3587635

  12. Cattoni A, Mailly D, Dalstein O, Faustini M, Seniutinas G, Rösner B, David C (2018) Sub-10 nm electron and helium ion beam lithography using a recently developed alumina resist. Microelectron Eng 193:18–22

    Article  CAS  Google Scholar 

  13. Orilall MC, Wiesner U (2011) Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. Chem Soc Rev 40(2):520–535. https://doi.org/10.1039/C0CS00034E

    Article  CAS  Google Scholar 

  14. Ceratti DR, Louis B, Paquez X, Faustini M, Grosso D (2015) A new dip coating method to obtain large-surface coatings with a minimum of solution. Adv Mater 27(34):4958-+. https://doi.org/10.1002/adma.201502518

    Article  CAS  Google Scholar 

  15. Elmaalouf M, Odziomek M, Duran S, Gayrard M, Bahri M, Tard C, Zitolo A, Lassalle-Kaiser B, Piquemal J-Y, Ersen O, Boissière C, Sanchez C, Giraud M, Faustini M, Peron J (2021) The origin of the high electrochemical activity of pseudo-amorphous iridium oxides. Nat Commun 12(1):3935. https://doi.org/10.1038/s41467-021-24181-x

    Article  CAS  Google Scholar 

  16. De Marco ML, Baaziz W, Sharna S, Devred F, Poleunis C, Chevillot-Biraud A, Nowak S, Haddad R, Odziomek M, Boissière C, Debecker DP, Ersen O, Peron J, Faustini M (2022) High-entropy-alloy nanocrystal based macro- and mesoporous materials. ACS Nano 16(10):15837–15849. https://doi.org/10.1021/acsnano.2c05465

    Article  CAS  Google Scholar 

  17. Boudot M, Cattoni A, Grosso D, Faustini M (2016) Ethanol–water co-condensation into hydrophobic mesoporous thin films: example of a photonic ethanol vapor sensor in humid environment. J Sol-Gel Sci Technol 1–10. https://doi.org/10.1007/s10971-016-4084-2

  18. Carboni D, Jiang Y, Faustini M, Malfatti L, Innocenzi P (2016) Improving the selective efficiency of graphene-mediated enhanced Raman scattering through molecular imprinting. ACS Appl Mater Interfaces 8(49):34098–34107

    Article  CAS  Google Scholar 

  19. Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42(9):4198–4216. https://doi.org/10.1039/C3CS35377J

    Article  CAS  Google Scholar 

  20. Sanchez C, Boissière C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mat 20(3):682–737

    Article  CAS  Google Scholar 

  21. Seco AM, Gonçalves MC, Almeida RM (2000) Densification of hybrid silica–titania sol–gel films studied by ellipsometry and FTIR. Mater Sci Eng B 76(3):193–199. https://doi.org/10.1016/S0921-5107(00)00442-6

    Article  Google Scholar 

  22. Innocenzi P, Malfatti L, Kidchob T, Costacurta S, Falcaro P, Piccinini M, Marcelli A, Morini P, Sali D, Amenitsch H (2007) Time-resolved simultaneous detection of structural and chemical changes during self-assembly of mesostructured films. J Phys Chem C 111(14):5345–5350. https://doi.org/10.1021/jp066566c

    Article  CAS  Google Scholar 

  23. Alvarez-Fernandez A, Reid B, Fornerod MJ, Taylor A, Divitini G, Guldin S (2020) Structural characterization of mesoporous thin film architectures: a tutorial overview. ACS Appl Mater Interfaces 12(5):5195–5208. https://doi.org/10.1021/acsami.9b17899

    Article  CAS  Google Scholar 

  24. Hurd AJ, Brinker CJ (1988) Optical sol-gel coatings: ellipsometry of film formation. J Phys 49(6):1017–1025

    Article  CAS  Google Scholar 

  25. Xie H, Wei J, Zhang X (2006) Characterisation of sol-gel thin films by spectroscopic ellipsometry. J Phys: Conf Ser IOP Publishing, p 20

  26. Gartner M, Stoica M, Nicolescu M, Stroescu H (2021) The ellipsometry versatility in the study of sol-gel films. J Sol-Gel Sci Technol 98(1):1–23. https://doi.org/10.1007/s10971-021-05504-2

    Article  CAS  Google Scholar 

  27. Boudot M, Ceratti DR, Faustini M, Boissiere C, Grosso D (2014) Alcohol-assisted water condensation and stabilization into hydrophobic mesoporosity. J Phys Chem C 118(41):23907–23917. https://doi.org/10.1021/jp508372d

    Article  CAS  Google Scholar 

  28. Louis B, Krins N, Faustini M, Grosso D (2011) Understanding crystallization of anatase into binary Sio2/Tio2 sol-gel optical thin films: an in situ thermal ellipsometry analysis. J Phys Chem C 115(7):3115–3122. https://doi.org/10.1021/jp109653p

    Article  CAS  Google Scholar 

  29. Li R, Faustini M, Boissiere C, Grosso D (2014) Water capillary condensation effect on the photocatalytic activity of porous TiO2 in air. J Phys Chem C 118(31):17710–17716. https://doi.org/10.1021/jp5046468

    Article  CAS  Google Scholar 

  30. Bindini E, Chehadi Z, Faustini M, Albouy P-A, Grosso D, Cattoni A, Chanéac C, Azzaroni O, Sanchez C, Boissière C (2020) Following in situ the degradation of mesoporous silica in biorelevant conditions: at last, a good comprehension of the structure influence. ACS Appl Mater Interfaces 12(12):13598–13612. https://doi.org/10.1021/acsami.9b19956

    Article  CAS  Google Scholar 

  31. Dalstein O, Ceratti DR, Boissière C, Grosso D, Cattoni A, Faustini M (2016) Nanoimprinted, submicrometric, MOF-based 2D photonic structures: toward easy selective vapors sensing by a smartphone camera. Adv Funct Mater 26(1):81–90

    Article  CAS  Google Scholar 

  32. Löbmann P (2017) Characterization of sol–gel thin films by ellipsometric porosimetry. J Sol-Gel Sci Technol 84(1):2–15

    Article  Google Scholar 

  33. Baklanov BMR, Mogilnikov KP, Polovinkin VG, Dultsev FN (2000) Determination of pore size distribution in thin films by ellipsometric porosimetry. J Vac Sci Technol B: Microelectron Nanometer Struct Process, Meas, Phenom 18(3):1385–1391

    Article  CAS  Google Scholar 

  34. Boissiere C, Grosso D, Lepoutre S, Nicole L, Bruneau AB, Sanchez C (2005) Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir 21(26):12362–12371. https://doi.org/10.1021/la050981z

    Article  CAS  Google Scholar 

  35. Bruynooghe S, Bertin F, Chabli A, Gay JC, Blanchard B, Couchaud M (1998) Infrared spectroscopic ellipsometry for residual water detection in annealed sol–gel thin layers. Thin Solid Films 313–314:722–726. https://doi.org/10.1016/S0040-6090(97)00985-1

    Article  Google Scholar 

  36. Bass JD, Grosso D, Boissiere C, Sanchez C (2008) Pyrolysis, crystallization, and sintering of mesostructured titania thin films assessed by in situ thermal ellipsometry. J Am Chem Soc 130(25):7882–7897. https://doi.org/10.1021/ja078140x

    Article  CAS  Google Scholar 

  37. Amenitsch H, Rappolt M, Kriechbaum M, Mio H, Laggner P, Bernstorff S (1998) First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J Synchrotron Radiat 5(3):506–508

    Article  CAS  Google Scholar 

  38. Soler-Illia GJAA, Angelomé PC, Fuertes MC, Grosso D, Boissiere C (2012) Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale 4(8):2549–2566

    Article  CAS  Google Scholar 

  39. Crepaldi EL, Soler-Illia GJDAA, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. J Am Chem Soc 125(32):9770–9786. https://doi.org/10.1021/ja030070g

    Article  CAS  Google Scholar 

  40. Joel M, Thomas ET, Jeffrey SH, James NH, Andrew CM (2020) Application of a B-spline model dielectric function to infrared spectroscopic ellipsometry data analysis. J Vac Sci Technol B 38(1):014001. https://doi.org/10.1116/1.5126110

    Article  CAS  Google Scholar 

  41. Silverstein RM, Bassler GC (1962) Spectrometric identification of organic compounds. J Chem Educ 39(11):546

    Article  CAS  Google Scholar 

  42. Pielichowski K, Flejtuch K (2005) Non-oxidative thermal degradation of poly (ethylene oxide): kinetic and thermoanalytical study. J Anal Appl Pyroly 73(1):131–138

    Article  CAS  Google Scholar 

  43. Innocenzi P, Kidchob T, Costacurta S, Falcaro P, Marmiroli B, Cacho-Nerin F, Amenitsch H (2010) Patterning block copolymer thin films by deep X-ray lithography. Soft Matter 6(14):3172–3176

    Article  CAS  Google Scholar 

  44. de Sainte Claire P (2009) Degradation of PEO in the solid state: a theoretical kinetic model. Macromolecules 42(10):3469–3482. https://doi.org/10.1021/ma802469u

    Article  CAS  Google Scholar 

  45. Malfatti L, Falcaro P, Amenitsch H, Caramori S, Argazzi R, Bignozzi CA, Enzo S, Maggini M, Innocenzi P (2006) Mesostructured self-assembled titania films for photovoltaic applications. Microporous Mesoporous Mater 88(1):304–311. https://doi.org/10.1016/j.micromeso.2005.09.027

    Article  CAS  Google Scholar 

  46. Brigo L, Grenci G, Carpentiero A, Pistore A, Tormen M, Guglielmi M, Brusatin G (2011) Positive resist for UV and X-ray lithography synthesized through sol–gel chemistry. J Sol-Gel Sci Technol 60(3):400–407. https://doi.org/10.1007/s10971-011-2512-x

    Article  CAS  Google Scholar 

  47. Faustini M, Marmiroli B, Malfatti L, Louis B, Krins N, Falcaro P, Grenci G, Laberty-Robert C, Amenitsch H, Innocenzi P, Grosso D (2011) Direct nano-in-micropatterning of TiO2 thin layers and TiO2/Pt nanoelectrode arrays by deep X-ray lithography. J Mater Chem 21(11):3597–3603. https://doi.org/10.1039/c0jm03493b

    Article  CAS  Google Scholar 

  48. Falcaro P, Malfatti L, Vaccari L, Amenitsch H, Marmiroli B, Grenci G, Innocenzi P (2009) Fabrication of advanced functional devices combining soft chemistry with X-ray lithography in one step. Adv Mater 21(48):4932-+. https://doi.org/10.1002/adma.200901561

    Article  CAS  Google Scholar 

  49. Gómez-Lopez A, Rivas YA, López-Fajardo S, Jiménez R, Ricote J, Pecharromán C, Montero I, Bretos I, Calzada ML (2023) In situ photogenerated hydroxyl radicals in the reaction atmosphere for the accelerated crystallization of solution-processed functional metal oxide thin films. J Mater Chem C 11(7):2619–2629. https://doi.org/10.1039/D2TC05447G

    Article  Google Scholar 

  50. Bretos I, Jiménez R, Ricote J, Calzada ML (2020) Photochemistry in the low‐temperature processing of metal oxide thin films by solution methods. Chem– Eur J 26(42):9277–9291

    Article  CAS  Google Scholar 

  51. De Dobbelaere C, Calzada ML, Jiménez R, Ricote J, Bretos I, Mullens J, Hardy A, Van Bael MK (2011) Aqueous solutions for low-temperature photoannealing of functional oxide films: reaching the 400 °C Si-technology integration barrier. J Am Chem Soc 133(33):12922–12925. https://doi.org/10.1021/ja203553n

    Article  CAS  Google Scholar 

  52. Avci C, De Marco ML, Byun C, Perrin J, Scheel M, Boissière C, Faustini M (2021) Metal–organic framework photonic balls: single object analysis for local thermal probing. Adv Mater 33(43):2104450

    Article  CAS  Google Scholar 

  53. Grosso D, Soler-Illia GJDAA, Crepaldi EL, Cagnol F, Sinturel C, Bourgeois A, Brunet-Bruneau A, Amenitsch H, Albouy PA, Sanchez C (2003) Highly porous TiO2 anatase optical thin films with cubic mesostructure stabilized at 700 °C. Chem Mater 15(24):4562–4570. https://doi.org/10.1021/cm031060h

    Article  CAS  Google Scholar 

  54. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237. https://doi.org/10.1021/la800305j

    Article  CAS  Google Scholar 

  55. Chateau D, Desert A, Lerouge F, Landaburu G, Santucci S, Parola S (2019) Beyond the concentration limitation in the synthesis of nanobipyramids and other pentatwinned gold nanostructures. ACS Appl Mater Interfaces 11(42):39068–39076. https://doi.org/10.1021/acsami.9b12973

    Article  CAS  Google Scholar 

  56. Wang Y, Teitel S, Dellago C (2005) Surface-driven bulk reorganization of gold nanorods. Nano Lett 5(11):2174–2178

    Article  CAS  Google Scholar 

  57. Opletal G, Grochola G, Chui YH, Snook IK, Russo SP (2011) Stability and transformations of heated gold nanorods. J Phys Chem C 115(11):4375–4380. https://doi.org/10.1021/jp1074913

    Article  CAS  Google Scholar 

  58. Gayrard M, Chancerel F, De Marco ML, Naumenko D, Boissière C, Rozes L, Amenitsch H, Peron J, Cattoni A, Faustini M (2022) Block-copolymers enable direct reduction and structuration of noble metal-based films. Small 18(5):2104204. https://doi.org/10.1002/smll.202104204

    Article  CAS  Google Scholar 

  59. Dasgupta S, Biswas S, Dedecker K, Dumas E, Menguy N, Berini B, Lavedrine B, Serre C, Boissière C, Steunou N (2023) In operando spectroscopic ellipsometry investigation of MOF thin films for the selective capture of acetic acid. ACS Appl Mater Interfaces https://doi.org/10.1021/acsami.2c17682

Download references

Acknowledgements

We thank D. Montero and the Institut des Matériaux de Paris Centre (IMPC FR2482) for servicing FEGSEM & EDX instrumentation and Sorbonne Université, CNRS and C’Nano projects of the Région Ile-de-France for funding.

Funding

This work was supported by the European Research Council (ERC) under European Union’s Horizon 2020 Programme (Grant Agreement no. 803220, TEMPORE). This project has also received funding from the EU-H2020 research and innovation programme under grant agreement No. 654360 having benefitted from the access provided by ELETTRA Trieste, Italy, within the framework of the NFFA-Europe Transnational Access Activity. The infrared ellipsometry was funded by the Région Ile-de-France in the framework of DIM ResPore and by the French state within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02, within the framework of the Cluster of Excellence MATISSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Faustini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amyar, H., Byun, C., Besbes, M. et al. In situ infrared spectroscopic ellipsometry as a tool to probe the formation of sol–gel based mesoporous films. J Sol-Gel Sci Technol (2023). https://doi.org/10.1007/s10971-023-06169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-023-06169-9

Keywords

Navigation