Skip to main content

Advertisement

Log in

Poly(methyl methacrylate)-silica-calcium phosphate coatings for the protection of Ti6Al4V alloy

  • Invited Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Poly(methyl methacrylate) (PMMA)-silica coatings modified with calcium phosphates (CaPs) in the form of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) have been developed to improve the corrosion resistance and bioactivity of Ti6Al4V titanium alloys, applied in medical and dental implants. PMMA-silica hybrids containing 1000 ppm HA or β-TCP were prepared by combining the sol-gel reactions of tetraethylorthosilicate (TEOS) with the radical polymerization of methyl methacrylate (MMA) and 3-methacryloxypropyl trimethoxysilane (MPTS), used as molecular coupling agent. Bi-layer coatings about 15 μm thick, deposited by immersion on Ti6Al4V, are homogeneous, defect-free, and exhibit strong adhesion to the substrate (>14 MPa). The addition of HA and β-TCP led to a slight increase in thermal stability, without affecting the structural integrity of the highly crosslinked PMMA-silica matrix. The greater hydrophilicity and surface roughness of coatings containing HA and β-TCP are associated with the size and chemical composition of CaPs, necessary for effective osteointegration. The modified coatings showed high anti-corrosion efficiency with low-frequency impedance modulus values of up to 73 GΩ cm2, remaining stable after 150 days of exposure to simulated body fluid (SBF) solution.

Graphical Abstract

To protect the Ti6Al4V alloy used for orthopedic and orthodontic implants, poly(methyl methacrylate) (PMMA)-silica-calcium phosphates coatings were obtained by the addition of bioactive additives such as β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA). Bi-layer coatings of about 15 µm thickness formed by a calcium phosphate-modified surface layer and an unmodified barrier base layer, were deposited by immersion on the Ti6Al4V substrates. The high corrosion resistance and long durability of the coatings in simulated body fluid (SBF) solution are related to a highly reticulated nanostructure of uniformly distributed silica nanodomains covalently conjugated with the polymer matrix.

Highlights

  • Biocompatible PMMA-silica/PMMA-silica-calcium phosphate coatings for protection of Ti6Al4V alloy.

  • Calcium phosphate addition preserves the integrity of the highly cross-linked PMMA-silica hybrid.

  • Adherent bilayer coating provides efficient and durable corrosion protection for the Ti6Al4V alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in Medicine, 1st ed. Springer, Berlin, Heidelberg

  2. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog Mater Sci 54:397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  3. Williams DF (2001) Titanium for Medical Applications. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 13–24

  4. Abdel-Hady Gepreel M, Niinomi M (2013) Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater 20:407–415. https://doi.org/10.1016/j.jmbbm.2012.11.014

    Article  CAS  Google Scholar 

  5. Matusiewicz H (2014) Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles – A systematic analytical review. Acta Biomater 10:2379–2403. https://doi.org/10.1016/j.actbio.2014.02.027

    Article  CAS  Google Scholar 

  6. Costa BC, Tokuhara CK, Rocha LA et al. (2019) Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. Materials Science and Engineering: C 96:730–739. https://doi.org/10.1016/j.msec.2018.11.090

    Article  CAS  Google Scholar 

  7. Gomes CC, Moreira LM, Santos VJSV et al. (2011) Assessment of the genetic risks of a metallic alloy used in medical implants. Genet Mol Biol 34:116–121. https://doi.org/10.1590/S1415-47572010005000118

    Article  CAS  Google Scholar 

  8. Liu Z, Liu X, Ramakrishna S (2021) Surface engineering of biomaterials in orthopedic and dental implants: Strategies to improve osteointegration, bacteriostatic and bactericidal activities. Biotechnol J 16:2000116. https://doi.org/10.1002/biot.202000116

    Article  CAS  Google Scholar 

  9. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports 47:49–121. https://doi.org/10.1016/j.mser.2004.11.001

    Article  CAS  Google Scholar 

  10. Jeong J, Kim JH, Shim JH et al. (2019) Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res 23:4. https://doi.org/10.1186/s40824-018-0149-3

    Article  Google Scholar 

  11. Canillas M, Pena P, de Aza AH, Rodríguez MA (2017) Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio 56:91–112. https://doi.org/10.1016/j.bsecv.2017.05.001

    Article  CAS  Google Scholar 

  12. Asri RIM, Harun WSW, Hassan MA et al. (2016) A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. J Mech Behav Biomed Mater 57:95–108. https://doi.org/10.1016/j.jmbbm.2015.11.031

    Article  CAS  Google Scholar 

  13. Faustini M, Nicole L, Ruiz-Hitzky E, Sanchez C (2018) History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Adv Funct Mater 28:1704158. https://doi.org/10.1002/adfm.201704158

    Article  CAS  Google Scholar 

  14. Trentin A, de L, Gasparini A, Faria FA et al. (2020) Barrier properties of high performance PMMA-silica anticorrosion coatings. Prog Org Coat 138:105398. https://doi.org/10.1016/j.porgcoat.2019.105398

    Article  CAS  Google Scholar 

  15. dos Santos FC, Pulcinelli SH, Santilli CV, Hammer P (2021) Protective PMMA-silica coatings for aluminum alloys: Nanostructural control of elevated thermal stability and anticorrosive performance. Prog Org Coat 152:106129. https://doi.org/10.1016/j.porgcoat.2020.106129

    Article  CAS  Google Scholar 

  16. Uvida MC, Trentin A, Harb SV et al. (2022) Nanostructured Poly(methyl Methacrylate)–Silica Coatings for Corrosion Protection of Reinforcing Steel. ACS Appl Nano Mater 5:2603–2615. https://doi.org/10.1021/acsanm.1c04281

    Article  CAS  Google Scholar 

  17. Harb SV, Uvida MC, Trentin A et al. (2020) PMMA-silica nanocomposite coating: Effective corrosion protection and biocompatibility for a Ti6Al4V alloy. Materials Science and Engineering: C 110:110713. https://doi.org/10.1016/j.msec.2020.110713

    Article  CAS  Google Scholar 

  18. Rodič P, Korošec RC, Kapun B et al. (2020) Acrylate-Based Hybrid Sol-Gel Coating for Corrosion Protection of AA7075-T6 in Aircraft Applications: The Effect of Copolymerization Time. Polymers 12:948. https://doi.org/10.3390/polym12040948

    Article  CAS  Google Scholar 

  19. Hamulić D, Rodič P, Poberžnik M et al. (2020) The Effect of the Methyl and Ethyl Group of the Acrylate Precursor in Hybrid Silane Coatings Used for Corrosion Protection of Aluminium Alloy 7075-T6. Coatings 10:172. https://doi.org/10.3390/coatings10020172

    Article  CAS  Google Scholar 

  20. U.S. Food and Drug Administration (2002) Polymethylmethacrylate (PMMA) Bone Cement - Class II Special Controls Guidance Document for Industry and FDA. https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/polymethylmethacrylate-pmma-bone-cement-class-ii-special-controls-guidance-document-industry-and-fda. Accessed 22 Feb 2022

  21. Ha S-W, Weitzmann MN, Beck GR (2014) Bioactive Silica Nanoparticles Promote Osteoblast Differentiation through Stimulation of Autophagy and Direct Association with LC3 and p62. ACS Nano 8:5898–5910. https://doi.org/10.1021/nn5009879

    Article  CAS  Google Scholar 

  22. Tang L, Cheng J (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8:290–312. https://doi.org/10.1016/j.nantod.2013.04.007

    Article  CAS  Google Scholar 

  23. Rodríguez Lugo V, Castaño VM, Rubio-Rosas E (2016) Biomimetic growth of hydroxylapatite on SiO2–PMMA hybrid coatings. Mater Lett 184:265–268. https://doi.org/10.1016/j.matlet.2016.08.068

    Article  CAS  Google Scholar 

  24. Caselis JLV, Rosas ER, Meneses VMC (2012) Hybrid PMMA–silica anticorrosive coatings for stainless steel 316L. Corrosion Engineering, Science and Technology 47:131–137. https://doi.org/10.1179/1743278211Y.0000000035

    Article  CAS  Google Scholar 

  25. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Central European Journal of Physics 10:181–188. https://doi.org/10.2478/s11534-011-0096-2

    Article  Google Scholar 

  26. Shukla AK, Balasubramaniam R (2006) Effect of surface treatment on electrochemical behavior of CP Ti, Ti–6Al–4V and Ti–13Nb–13Zr alloys in simulated human body fluid. Corros Sci 48:1696–1720. https://doi.org/10.1016/j.corsci.2005.06.003

    Article  CAS  Google Scholar 

  27. Harb SV, Bassous NJ, de Souza TAC et al. (2020) Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants. Materials Science and Engineering: C 116:111149. https://doi.org/10.1016/j.msec.2020.111149

    Article  CAS  Google Scholar 

  28. Hirschorn B, Orazem ME, Tribollet B et al. (2010) Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta 55:6218–6227. https://doi.org/10.1016/j.electacta.2009.10.065

    Article  CAS  Google Scholar 

  29. Marcoen K, Gauvin M, de Strycker J et al. (2020) Molecular Characterization of Bonding Interactions at the Buried Steel Oxide–Aminopropyl Triethoxysilane Interface Accessed by Ar Cluster Sputtering. The Journal of Physical Chemistry C 24:13150–13161. https://doi.org/10.1021/acs.jpcc.0c01523

    Article  CAS  Google Scholar 

  30. Bagherifard S, Hickey DJ, de Luca AC et al. (2015) The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials 73:185–197. https://doi.org/10.1016/j.biomaterials.2015.09.019

    Article  CAS  Google Scholar 

  31. Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G et al. (2010) Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A Physicochem Eng Asp 365:222–229. https://doi.org/10.1016/j.colsurfa.2009.12.017

    Article  CAS  Google Scholar 

  32. Thevenot P, Hu W, Tang L (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8:270–280. https://doi.org/10.2174/156802608783790901

    Article  CAS  Google Scholar 

  33. Chow LC (2001) Solubility of Calcium Phosphates. In: Monographs in Oral Science, Karger, pp 94–111

  34. Hosseinalipour SM, Ershad-langroudi A, Hayati AN, Nabizade-Haghighi AM (2010) Characterization of sol–gel coated 316L stainless steel for biomedical applications. Prog Org Coat 67:371–374. https://doi.org/10.1016/j.porgcoat.2010.01.002

    Article  CAS  Google Scholar 

  35. Giliberti DC, White KK, Dee KC (2001) Control of Cell-Biomaterial Interactions. In: Dumitriu, S (ed.). Polymeric Biomaterials, Revised and Expanded, 2nd ed. CRC Press, Boca Raton, pp.361-375

  36. Altankov G, Groth T (1994) Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J Mater Sci Mater Med 5:732–737. https://doi.org/10.1007/BF00120366

    Article  CAS  Google Scholar 

  37. El Hadad AA, Barranco V, Jiménez-Morales A et al. (2014) Enhancing in vitro biocompatibility and corrosion protection of organic–inorganic hybrid sol–gel films with nanocrystalline hydroxyapatite. J Mater Chem B 2:3886–3896. https://doi.org/10.1039/C4TB00173G

    Article  CAS  Google Scholar 

  38. Sun J, Akdogan EK, Klein LC, Safari A (2007) Characterization and optical properties of sol–gel processed PMMA/SiO2 hybrid monoliths. J Non Cryst Solids 353:2807–2812. https://doi.org/10.1016/j.jnoncrysol.2007.05.158

    Article  CAS  Google Scholar 

  39. Wijesinghe WPSL, Mantilaka MMMGPG, Karunarathne TSEF, Rajapakse RMG (2019) Synthesis of a hydroxyapatite/poly(methyl methacrylate) nanocomposite using dolomite. Nanoscale Adv 1:86–88. https://doi.org/10.1039/C8NA00006A

    Article  CAS  Google Scholar 

  40. Jamil M, Elouahli A, Khallok H et al. (2019) Characterization of β-tricalcium phosphate-clay mineral composite obtained by sintering powder of apatitic calcium phosphate and montmorillonite. Surfaces and Interfaces 17:100380. https://doi.org/10.1016/j.surfin.2019.100380

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Brazilian funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [grant numbers 309419/2020-4, 142305/2020-0, 304410/2022-5] and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [grant number: 2019/13871-6].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayara Carla Uvida.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvida, M.C., Pulcinelli, S.H., Santilli, C.V. et al. Poly(methyl methacrylate)-silica-calcium phosphate coatings for the protection of Ti6Al4V alloy. J Sol-Gel Sci Technol 106, 627–638 (2023). https://doi.org/10.1007/s10971-023-06111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06111-z

Keywords

Navigation