Skip to main content
Log in

Acid–base sensor based on sol–gel encapsulation of bromothymol blue in silica: application for milk spoilage detection

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical, and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, silica capsules containing bromothymol blue (BTB) were synthesized by a modified Stöber sol–gel method. These silica capsules were dispersed into a high-density polyethylene (HDPE)/ethylene-vinyl acetate (EVA) polymeric matrix and then applied in milk spoilage detection tests. The effect of the KOH/BTB molar ratio used in the sol–gel synthesis on the structural, textural, and morphological characteristics of the resulting silica capsules was also investigated. Field emission gun scanning electron microscopy images of the silica capsules showed particles with spherical morphology and size ranging from 0.1 to 1 µm. All silica capsules presented a very low porosity and an encapsulated BTB content in the range of 12–37 µmol g−1. The increase of the KOH/BTB molar ratio resulted in an increase in the relative amount of six-fold siloxane rings and a decrease in the BET surface area of the silica capsules. Spoilage kinetics of milk at room and fridge temperature were much different, as evidenced by pH milk measurements. The milk storage temperature and the KOH content in the silica capsules affected the intensity and rate of blends color change. Blends (HDPE/EVA/silica capsules) with lower KOH content in the capsules showed faster kinetics and higher intensities of color change during the milk spoilage at both tested temperatures. These results showed the potential of the HDPE/EVA/silica capsules as a base material to a sensor packaging, which allows the verification of the milk quality by the end-users.

Highlights

  • Silica capsules containing bromothymol blue were synthesized by a modified Stöber sol–gel method.

  • Silica capsules were dispersed into an HDPE/EVA polymeric matrix and applied for milk spoilage detection.

  • The blends changed its color from blue tones to yellow tones as the milk spoils.

  • The milk storage temperature and the KOH content in the silica capsules influence the intensity and rate of the HDPE/EVA/silica capsules blends color change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haug A, Høstmark AT, Harstad OM (2007) Lipids Health Dis 6:1–16

    Article  Google Scholar 

  2. Ainfoainfo.cnptia.embrapa.br › bitstream › item › Anuario-LEITE-2019

  3. Lu M, Shiau Y, Wong J, Lin R, Kravis H, Blackmon T, Pakzad T, Jen T, Cheng A, Chang J, Ong E, Sarfaraz N, Wang NS (2013) Food Nutr Sci 4:113–123

    Google Scholar 

  4. Al-Qadiri HM, Lin M, Al-Holy MA, Cavinato AG, Rasco BA (2008) J Dairy Sci 91:950–958

    Article  CAS  Google Scholar 

  5. Puckett LG, Barrett G, Kouzoudis D, Grimes CA, Bachas LG (2003) Biosens Bioelectron 18:675–681

    Article  CAS  Google Scholar 

  6. Lee YG, Wu HY, Hsu CL, Liang CJ, Yuan HD (2009) Sens Actuator B-Chem 141:575–580

    Article  CAS  Google Scholar 

  7. Haugen J, Knut R, Langsrud S, Bredholt S (2006) Anal Chim Acta 565:10–16

    Article  CAS  Google Scholar 

  8. Kleyn DH, Lynch JM, Barbano DM, Bloom MJ, Mitchell MW (2001) J AOAC Int 84:1499–1508

    Article  CAS  Google Scholar 

  9. Ostlie HM, Helland MH, Narvhus JA (2003) Int J Food Microbiol 87:17–27

    Article  CAS  Google Scholar 

  10. Guggilla M, Rajeshwar B, Matche S (2016) Indian J Adv Chem Sci S1:68–72

    Google Scholar 

  11. Liang MT, Wang L (2018) Polymers 10:1–13

    Google Scholar 

  12. Massey LK (2003) Permeability properties of plastics and elastomers: a guide to packaging and barrier materials. Cambridge University Press, Cambridge

    Google Scholar 

  13. Capeletti LB, Bertotto FL, dos Santos JHZ, Moncada E, Cardoso MB (2010) Sens Actuator B-Chem 151:169–176

    Article  CAS  Google Scholar 

  14. Sabnis RW (2007) Handbook of acid-base indicators. CRC Press, Boca Raton

    Book  Google Scholar 

  15. Esposito S (2019) Materials 12(4):668

    Article  CAS  Google Scholar 

  16. Stöber W, Fink A, Bohn E (1968) Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  17. El-Nahhal IM, Zourab SM, Kodeh FS, Abd el-salam FH, Baker SA (2016) J SolGel Sci Technol 79:628–636

    Article  CAS  Google Scholar 

  18. Hanbury A, Serra J (2011) Image Anal Stereo 21:201–206

    Article  Google Scholar 

  19. Kapoor KL (2015) A textbook of physical chemistry: states of matter and ions in solution. McGraw Hill Education, New Delhi

    Google Scholar 

  20. Severo CGS, Costa DL, Bezerra IMT, Menezes RR, GA Neves (2013) Revista Eletrônica de Materiais e Processos 8.2:55–67

  21. Davidovits J (1991) J Therm Anal 37:1633–1656

    Article  CAS  Google Scholar 

  22. Vansant EF, Van Der Voort P, Vrancken KC (1995) Characterization and chemical modification of the silica surface. Elsevier, Amsterdam

    Google Scholar 

  23. Fidalgo A, Ciriminna R, Ilharco LM, Pagliaro M (2005) Chem Mater 17:6686–6694

    Article  CAS  Google Scholar 

  24. Fidalgo AM, Ilharco LM (2012) Micropor Mesopor Mat 158:39–46

    Article  CAS  Google Scholar 

  25. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW(2015) Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  26. Szekeres M, Tóth J, Dékány I (2002) Langmuir 18:2678–2685

    Article  CAS  Google Scholar 

  27. Vittoni C, Gatti G, Paul G, Mangano E, Brandani S, Bisio C, Marchese L (2019) ChemistryOpen 8:719–727

    Article  CAS  Google Scholar 

  28. Lowell S, Shields JE (1991) Adsorption isotherms. In: Gregg SJ, Sing KSW (eds) Powder surface area and porosity. powder technology series, vol 2. Springer, Dordrecht

  29. Alloul H, Roques-Carmes T, Toufaily J, Kassir M, Pelletier M, Razafitianamaharavo A, Hamieh T, Villiéras F (2016) Adsorption 22:923–937

    Article  CAS  Google Scholar 

  30. Sadhu SP (2018) Braz J Food Technol 21:e2017064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Brambilla.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stocker, M.K., Sanson, M.L., Bernardes, A.A. et al. Acid–base sensor based on sol–gel encapsulation of bromothymol blue in silica: application for milk spoilage detection. J Sol-Gel Sci Technol 98, 568–579 (2021). https://doi.org/10.1007/s10971-021-05529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05529-7

Keywords

Navigation