Skip to main content
Log in

Sol–Gel synthesis of Co3O4 nanoparticles as an electrode material for supercapacitor applications

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Cobalt Oxide (Co3O4) nanoparticles were synthesized with an aid of urea by sol–gel method. The results of X-ray diffraction revealed that the formation of face-centered cubic (Fd3m) structure and the average crystallite size of the product were found to be 13.76 nm. The formation of cobalt oxide is confirmed by FT-IR analysis. The results of HR-TEM images reveal that Co3O4 nanoparticles were found to have within the range of 13–15 nm. At 3 M KOH, electrochemical analyses were investigated with impedance spectroscopy and an intrinsic pseudo capacitance and the results were reported. The results of Galvanostatic charge-discharge (GCD) tests revealed the capacitive properties of Co3O4 with the highest specific capacitance of 761.25 F g−1.

Highlights

  • The specific capacitance of Co3O4 nanoparticles was found to be 761.25 F g−1 at 11 mA/cm2 current density.

  • The Co3O4 nanoparticles were synthesized by a simple sol–gel method.

  • The crystallite size of Co3O4 nanoparticles was found to be 13.76 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guan Q, Cheng J, Wang B et al. (2014) Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interf 6:7626–7632. https://doi.org/10.1021/am5009369

    Article  CAS  Google Scholar 

  2. Cheng JP, Zhang J, Liu F (2014) Recent development of metal hydroxides as electrode material of electrochemical capacitors. RSC Adv 4:38893–38917. https://doi.org/10.1039/c4ra06738j

    Article  CAS  Google Scholar 

  3. Huang D, Liu H, Li T, Niu Q (2019) Template-free synthesis of NiO skeleton crystal octahedron and effect of surface depression on electrochemical performance. J Sol-Gel Sci Technol 89:511–520. https://doi.org/10.1007/s10971-018-4908-3

    Article  CAS  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. https://doi.org/10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  5. Xuan D, Chengyang W, Mingming C et al. (2009) Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C 113:2643–2646. https://doi.org/10.1021/jp8088269

    Article  CAS  Google Scholar 

  6. Kaempgen M, Chan CK, Ma J et al. (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876. https://doi.org/10.1021/nl8038579

    Article  CAS  Google Scholar 

  7. Feng XY, Shen C, Yu Y et al. (2013) Synthesis and electrochemical properties of sticktight-like and nanosheet Co3O4 particles. J Power Sources 230:59–65. https://doi.org/10.1016/j.jpowsour.2012.12.046

    Article  CAS  Google Scholar 

  8. Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695. https://doi.org/10.1021/nl061576a

    Article  CAS  Google Scholar 

  9. Chen S, Zhu J, Wu X et al. (2010) Graphene oxide MnO2. ACS Nano 4:2822–2830. https://doi.org/10.1021/nn901311t

    Article  CAS  Google Scholar 

  10. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interf 5:2188–2196. https://doi.org/10.1021/am400012h

    Article  CAS  Google Scholar 

  11. Li X, Shao J, Li J et al. (2013) Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. J Power Sources 237:80–83. https://doi.org/10.1016/j.jpowsour.2013.03.020

    Article  CAS  Google Scholar 

  12. Deori K, Ujjain SK, Sharma RK, Deka S (2013) Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Appl Mater Interf 5:10665–10672. https://doi.org/10.1021/am4027482

    Article  CAS  Google Scholar 

  13. Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252:7487–7492. https://doi.org/10.1016/j.apsusc.2005.09.004

    Article  CAS  Google Scholar 

  14. Yan J, Wei T, Qiao W et al. (2010) Rapid microwave-assisted synthesis of graphene nanosheet/ Co3O4 composite for supercapacitors. Electrochim Acta 55:6973–6978. https://doi.org/10.1016/j.electacta.2010.06.081

    Article  CAS  Google Scholar 

  15. Wang G, Shen X, Horvat J et al. (2009) Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. J Phys Chem C 113:4357–4361. https://doi.org/10.1021/jp8106149

    Article  CAS  Google Scholar 

  16. Tummala R, Guduru RK, Mohanty PS (2012) Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique. J Power Sources 209:44–51. https://doi.org/10.1016/j.jpowsour.2012.02.071

    Article  CAS  Google Scholar 

  17. Sun L, Wang L, Tian C et al. (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2:4498–4506. https://doi.org/10.1039/c2ra01367c

    Article  CAS  Google Scholar 

  18. Lima-Tenório MK, Ferreira CS, Felix Rebelo QH et al. (2018) Pseudocapacitance properties of Co3O4 nanoparticles synthesized using a modified sol-gel method. Mater Res 21:1–7. https://doi.org/10.1590/1980-5373-MR-2017-0521

    Article  Google Scholar 

  19. Rosario AV, Bulhões LOS, Pereira EC (2006) Investigation of pseudocapacitive properties of RuO2 film electrodes prepared by polymeric precursor method. J Power Sources 158:795–800. https://doi.org/10.1016/j.jpowsour.2005.09.002

    Article  CAS  Google Scholar 

  20. Guo J, Chen L, Zhang X et al. (2014) Sol-gel synthesis of mesoporous Co3O4 octahedra toward high-performance anodes for lithium-ion batteries. Electrochim Acta 129:410–415. https://doi.org/10.1016/j.electacta.2014.02.104

    Article  CAS  Google Scholar 

  21. Ferreira CS, Passos RR, Pocrifka LA (2014) Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors. J Power Sources 271:104–107. https://doi.org/10.1016/j.jpowsour.2014.07.164

    Article  CAS  Google Scholar 

  22. Packiaraj R, Devendran P, Venkatesh KS et al. (2019) Electrochemical investigations of magnetic Co3O4 nanoparticles as an active electrode for supercapacitor applications. J Supercond Nov Magn 32:2427–2436. https://doi.org/10.1007/s10948-018-4963-6

    Article  CAS  Google Scholar 

  23. Binitha NN, Suraja PV, Yaakob Z et al. (2010) Simple synthesis of Co3O4 nanoflakes using a low temperature sol-gel method suitable for photodegradation of dyes. J Sol-Gel Sci Technol 53:466–469. https://doi.org/10.1007/s10971-009-2098-8

    Article  CAS  Google Scholar 

  24. Farhadi S, Pourzare K, Sadeghinejad S (2013) Simple preparation of ferromagnetic Co3O4 nanoparticles by thermal dissociation of the [CoII(NH3)6](NO3)2 complex at low temperature. J Nanostructure Chem 3:4–10. https://doi.org/10.1186/2193-8865-3-16

    Article  Google Scholar 

  25. Krishnan G, Kooi BJ, Palasantzas G, et al. (2010) Thermal stability of gas phase magnesium nanoparticles. J Appl Phys https://doi.org/10.1063/1.3305453

  26. Hai Z, Gao L, Zhang Q et al. (2016) Facile synthesis of core-shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors. Appl Surf Sci 361:57–62. https://doi.org/10.1016/j.apsusc.2015.11.171

    Article  CAS  Google Scholar 

  27. Meher SK, Justin P, Rao GR (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 3: 2063–2073. https://doi.org/10.1021/am200294k

  28. Saravanakumar B, Priyadharshini T, Ravi G et al. (2017) Hydrothermal synthesis of spherical NiCO2O4 nanoparticles as a positive electrode for pseudocapacitor applications. J Sol-Gel Sci Technol 84:297–305. https://doi.org/10.1007/s10971-017-4504-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Sophisticated Test and Instrumentation Centre, Cochin for extending their instrumental technical support of XRD facility and for recording HR-TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Anbarasan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadharsini, C.I., Marimuthu, G., Pazhanivel, T. et al. Sol–Gel synthesis of Co3O4 nanoparticles as an electrode material for supercapacitor applications. J Sol-Gel Sci Technol 96, 416–422 (2020). https://doi.org/10.1007/s10971-020-05393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05393-x

Keywords

Navigation