Skip to main content
Log in

A facile method to prepare cellulose whiskers–silica aerogel composites

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Highly porous and hydrophobic cellulose whiskers–silica aerogel composites were successfully fabricated by a novel co-precursor method based on sol–gel process under ambient pressure drying. Cellulose whiskers were dispersed in the initial sol and were finally inlaid in silica aerogel skeleton by physical combination, which retained the integrality of the aerogel matrix. With the increase of cellulose whiskers content from 0 to 15%, the volume shrinkage of alcogels during drying process decreased from 25.5 to 17.6%, while the porous nano-structure of aerogels were not significantly altered. The potential impact of cellulose whiskers on the thermal conductivity and thermal stability of the prepared composites was investigated. The new composite was intact and white, which exhibited typical properties of 0.137 g cm−3 density, 3.525 cm3 g−1 pore volume, and 139.6° contact angle, respectively. This work explained how the addition of an organic filler into the silica aerogels influenced their properties and provided a technique for silica aerogels to endure and remain monolithic under ambient pressure drying.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fricke J, Emmerling A (1992) Aerogels. J Am Ceram Soc 75:2027–2036

    Article  Google Scholar 

  2. Schmidt M, Schwertfeger F (1998) Applications for silica aerogel products. J Non Cryst Solids 225:364–368

    Article  Google Scholar 

  3. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York, NY

    Book  Google Scholar 

  4. Jones SM (2006) Aerogel: space exploration applications. J Solgel Sci Technol 40:351–357

    Article  Google Scholar 

  5. Laskowski J, Milow B, Ratke L (2016) Aerogel-aerogel composites for normal temperature range thermal insulations. J. Non Cryst Solids 441:42–48

    Article  Google Scholar 

  6. Gutzov S, Danchova N, Karakashev SI, Khristov M, Ivanova J, Ulbikas J (2014) Preparation and thermal properties of chemically prepared nanoporous silica aerogels. J Solgel Sci Technol 70:511–516

    Article  Google Scholar 

  7. Amiri TY, Moghaddas J, Khajeh SR (2016) Silica aerogel-supported copper catalyst prepared via ambient pressure drying process. J Solgel Sci Technol 77:627–635

    Article  Google Scholar 

  8. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438

    Article  Google Scholar 

  9. Ulker Z, Erkey C (2014) An emerging platform for drug delivery: aerogel based systems. J Control Release 177:51–63

    Article  Google Scholar 

  10. Leventis N, Sotiriou-Leventis C, Zhang GH, Rawashdeh AMM (2002) Nanoengineering strong silica aerogels. Nano Lett 2:957–960

    Article  Google Scholar 

  11. Zhang GH, Dass A, Rawashdeh AMM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis N (2004) Isocyanate-crosslinked silica aerogel monoliths preparation and characterization. J Non Cryst Solids 350:152–164

    Article  Google Scholar 

  12. Katti A, Shimpi N, Roy S, Hb Lu, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem Mater 18:285–296

    Article  Google Scholar 

  13. Williams JC, Meador MAB, McCorkle L, Mueller C, Wilmoth N (2014) Synthesis and properties of step-growth polyamide aerogels cross-Linked with triacid chlorides. Chem Mater 26:4163–4171

    Article  Google Scholar 

  14. Meador MAB, Aleman CR, Hanson K, Ramirez N, Vivod SL, Wilmoth N, McCorkle L (2015) Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl Mater Interfaces 7:1240–1249

    Article  Google Scholar 

  15. Yang X, Sun Y, Shi D (2012) Experimental investigation and modeling of the creep behavior of ceramic fiber-reinforced SiO2 aerogel. J Non Cryst Solids 358:519–524

    Article  Google Scholar 

  16. Liao Y, Wu H, Ding Y, Yin S, Wang M, Cao A (2012) Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. J Solgel Sci Technol 63:445–456

    Article  Google Scholar 

  17. Shi D, Sun Y, Feng J, Yang X, Han Sh, Mi Ch, Jiang Y, Qi H (2013) Experimental investigation on high temperature anisotropic compression properties of ceramic fiber-reinforced SiO2 aerogel. Mater Sci Eng A 585:25–31

    Article  Google Scholar 

  18. Koebel MM, Huber L, Zhao S, Malfait WJ (2016) Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale. J Solgel Sci Technol 79:308–318

    Article  Google Scholar 

  19. Feng JD, Le D, Nguyen ST, Nien VTC, Jewell D, Duong HM (2016) Silica-cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloid Surf A 506:298–305

    Article  Google Scholar 

  20. Markevicius G, Ladj R, Niemeyer P, Budtova T, Rigacci A (2017) Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers. J Mater Sci 52:2210–2221

    Article  Google Scholar 

  21. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  Google Scholar 

  22. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  Google Scholar 

  23. Villarroel-Rocha J, Barrera D, Sapag K (2014) Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Microporous Mesoporous Mater 200:68–78

    Article  Google Scholar 

  24. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  Google Scholar 

  25. Kačuráková M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydr Res 337:1145–1153

    Article  Google Scholar 

  26. Naduparambath S, Purushothaman E (2016) Sago seed shell: determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 23:1803–1812

    Article  Google Scholar 

  27. Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characteration cellulose. Chem Technol 45:13–21

    Google Scholar 

  28. Rao AV, Kalesh RR (2003) Comparative studies of the physical and hydrophobic properties of TEOS based silica aerogels using different co-precursors. Sci Technol Adv Mater 4:509–515

    Article  Google Scholar 

  29. Rodriguez JE, Anderson AM, Carroll MK (2014) Hydrophobicity and drag reduction properties of surfaces coated with silica aerogels and xerogels. J Solgel Sci Technol 71:490–500

    Article  Google Scholar 

  30. Fricke J, Lu X, Wang P, Büttner D, Heinemann U (1992) Optimization of monolithic silica aerogel insulants. Int J Heat Mass Transf 35:2305–2309

    Article  Google Scholar 

  31. Kaganer MG (1969) Thermal insulation in cryogenic engineering. Israel program forensic science translation, Jerusalem

    Google Scholar 

  32. Siller M, Amer H, Bacher M, Roggenstein W, Rosenau T, Potthast A (2015) Effects of periodate oxidation on cellulose polymorphs. Cellulose 22:2245–2261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyi Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Jiang, H., Xu, D. et al. A facile method to prepare cellulose whiskers–silica aerogel composites. J Sol-Gel Sci Technol 83, 72–80 (2017). https://doi.org/10.1007/s10971-017-4384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4384-1

Keywords

Navigation