Skip to main content
Log in

Multifunctional organic–inorganic hybrids based on cellulose acetate and 3-glycidoxypropyltrimethoxysilane

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid films have been prepared from cellulose acetate (CA) and 3-glycidoxypropyltrimethoxysilane (GPTMS). Flexible films were fashioned with high relative content of GPTMS (up to 70 wt%) and exhibited high transparency in the visible/near-infrared region. The atomic force microscopy images of hybrid films display the presence of nanometric globular-like domains with size dependent and number dependent of the content of GPTMS. X-ray diffraction (XRD) patterns showed decreasing crystallinity of CA hybrid counterpart with increasing amounts of GPTMS. Spectroscopy results (vibrational spectroscopy FTIR and Raman scattering, 13C and 29Si NMR spectra) suggest that epoxy groups mostly remain intact and significant amount of methoxysilane groups is available after addition of GPTMS in CA. From 29Si NMR results, all compositions showed the presence of non-hydrolized GPTMS molecules or having mono- and disubstituted siloxane bonds. For highest relative content of GPTMS (i.e., 50 wt%), a considerably high amount of non-hydrolized (T0) is observed. Moreover, the addition of GPTMS leads to an increase in the thermal stability as compared to pure CA. Luminescent films were obtained by incorporating luminescent [Eu(TTA)3(H2O)2] complex (TTA = thenoyltrifluoroacetonate) into the hybrid films. Spectroscopic parameters did not significantly change with the incorporation of luminescent complex, suggesting application in photonics. The 5D0 states quantum efficiency was observed to be the same for the neat complex and the luminescent hybrid film, suggesting a weak interaction with the host.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wegst UGK, Bai H, Saiz E et al (2014) Bioinspired structural materials. Nat Mater 14:23–36. doi:10.1038/nmat4089

    Article  Google Scholar 

  2. Carro L, Hablot E, Coradin T (2014) Hybrids and biohybrids as green materials for a blue planet. J Sol Gel Sci Technol 70:263–271. doi:10.1007/s10971-013-3153-z

    Article  Google Scholar 

  3. Ganster J, Fink H (2013) Cellulose and cellulose acetate. In: Bio-based plastics: materials and applications. John Wiley & Sons Ltd, Chichester, pp 35–62

    Chapter  Google Scholar 

  4. Rodrigues Filho G, Monteiro DS, Meireles CDS et al (2008) Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydr Polym 73:74–82. doi:10.1016/j.carbpol.2007.11.010

    Article  Google Scholar 

  5. Lova P, Manfredi G, Boarino L et al (2015) Hybrid ZnO:polystyrene nanocomposite for all-polymer photonic crystals. Phys Status Solidi 12:158–162. doi:10.1002/pssc.201400209

    Article  Google Scholar 

  6. Unno N, Mäkelä T, Taniguchi J (2014) Thermal roll-to-roll imprinted nanogratings on plastic film. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 32:6. doi:10.1116/1.4897132

    Google Scholar 

  7. Cook PM, Kelley SS (1992) Grafted cellulose esters containing a silicon moiety. U.S. Patent 5082914

  8. Shojaie SS, Rials TG, Kelley SS (1995) Preparation and characterization of cellulose acetate organic/inorganic hybrid films. J Appl Polym Sci 58:1263–1274. doi:10.1002/app.1995.070580807

    Article  Google Scholar 

  9. Aparecida da Silva C, Maria Favaro M, Pagotto Yoshida IV, do Carmo Gonçalves M (2011) Nanocomposites derived from cellulose acetate and highly branched alkoxysilane. J Appl Polym Sci 121:2559–2566. doi:10.1002/app.33974

    Article  Google Scholar 

  10. Zoppi RA, Gonçalves MC (2002) Hybrids of cellulose acetate and sol-gel silica: morphology, thermomechanical properties, water permeability, and biodegradation evaluation. J Appl Polym Sci 84:2196–2205. doi:10.1002/app.10427

    Article  Google Scholar 

  11. Heikkinen JJ, Riihimäki TA, Määttä JAE et al (2011) Covalent biofunctionalization of cellulose acetate with thermostable chimeric avidin. ACS Appl Mater Interfaces 3:2240–2245. doi:10.1021/am200272u

    Article  Google Scholar 

  12. Achoundong CSK, Bhuwania N, Burgess SK et al (2013) Silane modification of cellulose acetate dense films as materials for acid gas removal. Macromolecules 46:5584–5594. doi:10.1021/ma4010583

    Article  Google Scholar 

  13. Charles RG, Ohlmann RC (1965) Europium thenoyltrifluoroacetonate, preparation and fluorescence properties. J Inorg Nucl Chem 27:255–259. doi:10.1016/0022-1902(65)80222-6

    Article  Google Scholar 

  14. Silverstein RM, Webster FX, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. John Wiley and Sons Ltd, New York, p 512

    Google Scholar 

  15. Sapić IM, Bistricić L, Volovsek V et al (2009) DFT study of molecular structure and vibrations of 3-glycidoxypropyltrimethoxysilane. Spectrochim Acta A Mol Biomol Spectrosc 72:833–840. doi:10.1016/j.saa.2008.11.032

    Article  Google Scholar 

  16. Toprak C, Agar JN, Falk M (1979) State of water in cellulose acetate membranes. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 75:803–815. doi:10.1039/f19797500803

    Google Scholar 

  17. Firsov SP, Zhbankov RG (1982) Raman spectra and physical structure of cellulose triacetate. J Appl Spectrosc 37:940–947. doi:10.1007/BF00663171

    Article  Google Scholar 

  18. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons Ltd, Chichester, p 342

    Google Scholar 

  19. Zhang K, Feldner A, Fischer S (2011) FT Raman spectroscopic investigation of cellulose acetate. Cellulose 18:995–1003. doi:10.1007/s10570-011-9545-8

    Article  Google Scholar 

  20. Riegel B, Blittersdorf S, Kiefer W et al (1998) Kinetic investigations of hydrolysis and condensation of the glycidoxypropyltrimethoxysilane/aminopropyltriethoxy-silane system by means of FT-Raman spectroscopy I. J Non Cryst Solids 226:76–84. doi:10.1016/S0022-3093(97)00487-0

    Article  Google Scholar 

  21. Kono H, Erata T, Takai M (2002) CP/MAS 13 C NMR study of cellulose and cellulose derivatives. 2. Complete assignment of the 13 C resonance for the ring carbons of cellulose triacetate polymorphs. J Am Chem Soc 124:7512–7518. doi:10.1021/ja010705g

    Article  Google Scholar 

  22. Kono H, Yunoki S, Shikano T et al (2002) CP/MAS 13 C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13 C NMR spectrum of the native cellulose. J Am Chem Soc 124:7506–7511. doi:10.1021/ja010704o

    Article  Google Scholar 

  23. Keely CM, Zhang X, McBrierty VJ (1995) Hydration and plasticization effects in cellulose acetate: a solid-state NMR study. J Mol Struct 355:33–46. doi:10.1016/0022-2860(95)08865-S

    Article  Google Scholar 

  24. Williams EA (1984) Recent advances in silicon-29 NMR spectroscopy. Annu Reports NMR Spectrosc 15:235–289. doi:10.1016/S0066-4103(08)60209-4

    Article  Google Scholar 

  25. Innocenzi P, Brusatin G, Babonneau F (2000) Competitive polymerization between organic and inorganic networks in hybrid materials. Chem Mater 12:3726–3732. doi:10.1021/cm001139b

    Article  Google Scholar 

  26. Barud HS, de Araújo Júnior AM, Santos DB et al (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471:61–69. doi:10.1016/j.tca.2008.02.009

    Article  Google Scholar 

  27. Sassi J-F, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127. doi:10.1007/BF00816384

    Article  Google Scholar 

  28. Wu H, Fang X, Zhang X et al (2008) Cellulose acetate–poly(N-vinyl-2-pyrrolidone) blend membrane for pervaporation separation of methanol/MTBE mixtures. Sep Purif Technol 64:183–191. doi:10.1016/j.seppur.2008.09.013

    Article  Google Scholar 

  29. Wang J, Fan X, Tian W et al (2011) Ring-opening polymerization of γ-glycidoxypropyltrimethoxysilane catalyzed by multi-metal cyanide catalyst. J Polym Res 18:2133–2139. doi:10.1007/s10965-011-9623-5

    Article  Google Scholar 

  30. Yamazaki R, Karyu N, Noda M et al (2016) Quantitative measurement of physisorbed silane on a silica particle surface treated with silane coupling agents by thermogravimetric analysis. J Appl Polym. doi:10.1002/app.43256

    Google Scholar 

  31. Malta OL, Brito HF, Menezes JFS et al (1997) Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model. J Lumin 75:255–268. doi:10.1016/S0022-2313(97)00107-5

    Article  Google Scholar 

  32. Teotonio EES, Fett GM, Brito HF et al (2008) Evaluation of intramolecular energy transfer process in the lanthanide(III) bis- and tris-(TTA) complexes: Photoluminescent and triboluminescent behavior. J Lumin 128:190–198. doi:10.1016/j.jlumin.2007.07.005

    Article  Google Scholar 

  33. de Sá G, Malta O, de Mello Donegá C et al (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev 196:165–195. doi:10.1016/S0010-8545(99)00054-5

    Article  Google Scholar 

  34. Molina C, Dahmouche K, Messaddeq Y et al (2003) Enhanced emission from Eu(III) β-diketone complex combined with ether-type oxygen atoms of di-ureasil organic–inorganic hybrids. J Lumin 104:93–101. doi:10.1016/S0022-2313(02)00684-1

    Article  Google Scholar 

  35. Caiut JMA, Barud HS, Santos MV et al (2011) Luminescent multifunctional biocellulose membranes. Proc SPIE 8104, Nanostructured Thin Films IV, 81040Z. doi:10.1117/12.895418

  36. Carlos LD, Messaddeq Y, Brito HF et al (2000) Full-color phosphors from europium(III)-based organosilicates. Adv Mater 12:594–598. doi:10.1002/(SICI)1521-4095(200004)12:8<594:AID-ADMA594>3.0.CO;2-S

    Article  Google Scholar 

  37. de Mello Donegá C, Junior SA, de Sá G (1997) Synthesis, luminescence and quantum yields of Eu(III) mixed complexes with 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 1,10-phenanthroline-N-oxide. J Alloys Compd 250:422–426. doi:10.1016/S0925-8388(96)02562-5

    Article  Google Scholar 

  38. Raj DBA, Biju S, Reddy MLP (2008) One-, two-, and three-dimensional arrays of Eu 3+-4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dione complexes: synthesis, crystal structure and photophysical properties. Inorg Chem 47:8091–8100. doi:10.1021/ic8004757

    Article  Google Scholar 

  39. Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750–761. doi:10.1103/PhysRev002E127.750

    Article  Google Scholar 

  40. Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511–520. doi:10.1063/1.1701366

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). R. R. Silva and M. V. dos Santos thank to Fundação de Amparo à Ciência e Tecnologia do Estado de São Paulo (FAPESP) for the Grant Nos. 2013/12367-6 and 2014/12424-2, respectively. A. Tercjak acknowledges FAPESP for a visiting professor Grant No. 2014/24692-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidney J. L. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.R., Salvi, D.T.B., Santos, M.V. et al. Multifunctional organic–inorganic hybrids based on cellulose acetate and 3-glycidoxypropyltrimethoxysilane. J Sol-Gel Sci Technol 81, 114–126 (2017). https://doi.org/10.1007/s10971-016-4089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4089-x

Keywords

Navigation