Skip to main content
Log in

Green synthesis of zirconia nanoparticles using the modified Pechini method and characterization of its optical and electrical properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Zirconia nanoparticles with the cubic phase were prepared from zirconium acetate and lemon juice as the precursors. Then, the effect of sucrose addition on improving the particle size and the agglomeration of product was investigated. The particle size of as-synthesized nanoparticles was obtained using FESEM. The results showed that the as-obtained product with the mix of lemon juice (20 mL) and sucrose had a better morphology with the mean particle size of about 21 nm. These nanoparticles were selected and further characterized by EDS, AAS, XRD, UV–Vis, and PL spectroscopy. The EDS and AAS revealed the presence of Mg and Ca in the sample introduced from lemon juice. Also, XRD confirmed the formation of the cubic-phase zirconia. The synthesized cubic ZrO2 nanoparticles exhibited a broad photoluminescence in the UV–Vis region. Then, a pellet from these nanoparticles was prepared and the electrical property of this sample was measured in the temperature range of 450–750 °C using four-probe techniques. The results revealed that these zirconia nanoparticles could have a potential application as an electrolyte material in the intermediate-temperature solid oxide fuel cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zink N et al (2013) Low temperature synthesis of monodisperse nanoscaled ZrO2 with a large specific surface area. Dalton Trans 42:432

    Article  Google Scholar 

  2. Davar F, Hassankhani A, Loghman-Estarki MR (2013) Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method. Ceram Int 39:2933–2941

    Article  Google Scholar 

  3. Loghman-Estarki MR et al (2013) Comparative studies on synthesis of nanocrystalline Sc2O3–Y2O3 doped zirconia (SYDZ) and YSZ solid solution via modified and classic Pechini method. CrystEngComm 15:5898

    Article  Google Scholar 

  4. Loghman-Estarki MR, Nejati M, Edris H, Razavi RS, Jamai H (2015) Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt. J Eur Ceram Soc 35:693–702

    Article  Google Scholar 

  5. Tsunekawa S et al (2003) Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Lett 3:871

    Article  Google Scholar 

  6. Serena S, Caballero A, Sainz MA (2013) Analysis of the polymorphic transformation of nano-and microcrystalline zirconia doped with CaO and MgO during reaction-sintering process by neutron thermodiffraction. A thermodynamic approach. J Eur Ceram Soc 33:1413

    Article  Google Scholar 

  7. Nath S, Sinha N, Basu B (2008) Microstructure, mechanical and tribological properties of microwave sintered calcia-doped zirconia for biomedical applications. Ceram Int 34:1509

    Article  Google Scholar 

  8. Flegler AJ et al (2014) Cubic yttria stabilized zirconia sintering additive impacts: a comparative study. Ceram Int 40:16323

    Article  Google Scholar 

  9. Petrik NG, Taylor DP, Orlando TM (1999) Laser-stimulated luminescence of yttria-stabilized cubic zirconia crystals. J Appl Phys 85:6770

    Article  Google Scholar 

  10. Tan D et al (2009) Preparation of zirconia nanoparticles by pulsed laser ablation in liquid. Chem Lett 38:1102

    Article  Google Scholar 

  11. Brossmann U et al (2007) Microwave plasma synthesis of nano-crystalline YSZ. Phys Status Solidi (RRL) Rapid Res Lett 1:107

    Article  Google Scholar 

  12. Salavati-Niasari M, Dadkhah M, Davar F (2009) Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron 28:3005

    Article  Google Scholar 

  13. Meetei SD, Singh SD (2014) Hydrothermal synthesis and white light emission of cubic ZrO2:Eu3+ nanocrystals. J Alloys Compd 587:143

    Article  Google Scholar 

  14. Majedi A, Davar F, Abbasi A (2014) Sucrose-mediated sol–gel synthesis of nanosized pure and S-doped zirconia and its catalytic activity for the synthesis of acetyl salicylic acid. J Ind Eng Chem 20:4215

    Article  Google Scholar 

  15. Barrera-Solano C et al (1994) Obtaining and sintering yttria stabilized zirconia (YSZ) powders from alkoxides. J Sol-Gel Sci Technol 2:347

    Article  Google Scholar 

  16. Răileanu M et al (2015) Sol-gel zirconia-based nanopowders with potential applications for sensors. Ceram Int 41:4381

    Article  Google Scholar 

  17. Liu Y et al (2012) Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. J Am Chem Soc 134:15083

    Article  Google Scholar 

  18. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33

    Article  Google Scholar 

  19. Lin C, Zhang C, Lin J (2007) Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the Pechini-type sol–gel process. J Phys Chem C 111:3300

    Article  Google Scholar 

  20. Razpotnik T, Maček J (2007) Synthesis of nickel oxide/zirconia powders via a modified Pechini method. J Eur Ceram Soc 27:1405

    Article  Google Scholar 

  21. Laberty-Robert C et al (2002) Synthesis of YSZ powders by the sol-gel method: surfactant effects on the morphology. Solid State Sci 4:1053

    Article  Google Scholar 

  22. Kumar PPNV et al (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod 52:562

    Article  Google Scholar 

  23. Bala N et al (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5:4993

    Article  Google Scholar 

  24. Lorente J et al (2014) Chemical guide parameters for Spanish lemon (Citrus limon (L.) Burm.) juices. Food Chem 162:186

    Article  Google Scholar 

  25. Dimri MC et al (2012) Room-temperature ferromagnetism in Ca and Mg stabilized cubic zirconia bulk samples and thin films prepared by pulsed laser deposition. J Phys D Appl Phys 45:475003

    Article  Google Scholar 

  26. Singh KA, Pathak LC, Roy SK (2007) Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate–citrate process. Ceram Int 33:1463

    Article  Google Scholar 

  27. Guo G-Y, Chen Y-L (2001) High-quality zirconia powder resulting from the attempted separation of acetic acid from acrylic acid with zirconium oxychloride. J Mater Chem 11:1283

    Article  Google Scholar 

  28. Sarkar D et al (2007) Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder. Ceram Int 33:1275

    Article  Google Scholar 

  29. Dawber JG, Brown DR, Reed RA (1966) Acid-catalyzed hydrolysis of sucrose: a student study of a reaction mechanism. J Chem Educ 43:34

    Article  Google Scholar 

  30. Joseph AM (1989) Thermal decomposition of carbohydrates, in thermal generation of aromas. American Chemical Society, Washington, p 32

    Google Scholar 

  31. Sahu HR, Rao GR (2000) Characterization of combustion synthesized zirconia powder by UV–vis, IR and other techniques. Bull Mater Sci 23:349

    Article  Google Scholar 

  32. Emeline A et al (1998) Spectroscopic and photoluminescence studies of a wide band gap insulating material: powdered and Colloidal ZrO2 sols. Langmuir 14:5011

    Article  Google Scholar 

  33. Xu X, Wang X (2009) Fine tuning of the sizes and phases of ZrO2 nanocrystals. Nano Res 2:891

    Article  Google Scholar 

  34. Reddy KM, Manorama SV, Reddy AR (2003) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78:239

    Article  Google Scholar 

  35. Choi S-I, Takeuchi T (1983) Electronic states of F-type centers in oxide crystals: a new picture. Phys Rev Lett 50:1474

    Article  Google Scholar 

  36. Liang J et al (2002) Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorg Chem 41:3602

    Article  Google Scholar 

  37. Lee DS et al (2005) Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs. Solid State Ion 176:33

    Article  Google Scholar 

  38. Yao M et al (2014) The influence of titanium doping on the electric properties of amorphous alumina films prepared by sol–gel technology. J Sol-Gel Sci Technol 74:39

    Article  Google Scholar 

  39. Kulkarni S, Duttagupta S, Phatak G (2014) Sol–gel synthesis and protonic conductivity of yttrium doped barium cerate. J Sol-Gel Sci Technol 74:94

    Article  Google Scholar 

  40. Kilner JA, Burriel M (2014) Materials for intermediate-temperature solid-oxide fuel cells. Annu Rev Mater Res 44:365

    Article  Google Scholar 

  41. Shao Z, Zhou W, Zhu Z (2012) Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog Mater Sci 57:804

    Article  Google Scholar 

  42. Rayment C, Sherwin S (2003) Introduction to fuel cell technology. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, p 1

    Google Scholar 

  43. Milewski J, Miller A (2006) Influences of the type and thickness of electrolyte on solid oxide fuel cell hybrid system performance. J Fuel Cell Sci Technol 3:396

    Article  Google Scholar 

  44. Kumar B et al (2005) Electrical properties of heterogeneously doped yttria stabilized zirconia. J Power Sources 140:12

    Article  Google Scholar 

  45. Guo X, Ding Y (2004) Grain boundary space charge effect in zirconia: experimental evidence. J Electrochem Soc 151:J1

    Article  Google Scholar 

  46. Mondal P et al (1999) Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia. Solid State Ion 118:331

    Article  Google Scholar 

  47. Hui S et al (2007) A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J Power Sources 172:493

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the University of Tehran for the financial support. We also appreciate the contribution from the Research Council of Isfahan University of Technology (IUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Davar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majedi, A., Abbasi, A. & Davar, F. Green synthesis of zirconia nanoparticles using the modified Pechini method and characterization of its optical and electrical properties. J Sol-Gel Sci Technol 77, 542–552 (2016). https://doi.org/10.1007/s10971-015-3881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3881-3

Keywords

Navigation