Skip to main content
Log in

Drug release behaviors of a pH/thermo-responsive porous hydrogel from poly(N-acryloylglycinate) and sodium alginate

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A pH/thermo-responsive hydrogel with porous structure (HME), composed of poly(N-acryloylglycine methyl ester), poly(N-acryloylglycine ethyl ester) and sodium alginate (SA) was prepared for the controllable drug carrier. The resultants, CO2 and CaCl2 from the reaction of CaCO3 particles and HCl act as pore-forming and crosslinking of SA, respectively. The porous HME was characterized by differential scanning calorimetry, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and surface area and porosity analysis. The sheet, porous structure was clearly observed by the SEM measurement and the specific surface area of HME was evidently increased with an increase of CaCO3 content. At pH 2.1 phosphate buffered saline (PBS), the release amount of caffeine at room temperature was only 7.2 % within 600 min, while this value approached to 65.3 % at pH 7.4 PBS. Additionally, the cumulative release at 37 °C is much higher than that at room temperature due to the thermo-sensitivity of HME. The experimental results indicated that porous HME has a potential to be used as the promising release-controlled drug carrier in the biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Doria-Serrano MC, Ruiz-Trevino FA, Rios-Arciga C, Hernandez-Esparza M, Santiago P (2001) Biomacromolecules 2:568–574

    Article  CAS  Google Scholar 

  2. Serizawa T, Wakita K, Akashi M (2002) Macromolecules 35:10–12

    Article  CAS  Google Scholar 

  3. Choi CY, Chae SY, Nah JW (2006) Polymer 47:4571–4580

    Article  CAS  Google Scholar 

  4. Salehi R, Arsalani N, Davaran S, Entezami AA (2009) J Biomed Mater Res A 89:919–928

    CAS  Google Scholar 

  5. Hu Y, Chen Y, Chen Q, Zhang L, Jiang XQ (2005) Polymer 46:12703–12710

    Article  CAS  Google Scholar 

  6. Shin HS, Kim SY, Lee YM (1997) J Appl Polym Sci 65:685–693

    Article  CAS  Google Scholar 

  7. Park H, Kang SW, Kim BS, Mooney DJ, Lee KY (2009) Macromol Biosci 9:895–901

    Article  CAS  Google Scholar 

  8. Lin WC, Liu TY, Yang MC (2004) Biomaterials 25:1947–1957

    Article  CAS  Google Scholar 

  9. Lee Y, Kim DN, Choi D, Lee W, Park J, Koh WG (2008) Polym Adv Technol 19:852–858

    Article  CAS  Google Scholar 

  10. Matsusaki M, Akashi M (2005) Biomacromolecules 6:3351–3356

    Article  CAS  Google Scholar 

  11. Lo CL, Lin KM, Hsiue GH (2005) J Control Release 104:477–488

    Article  CAS  Google Scholar 

  12. Ju HK, Kim SY, Lee YM (2001) Polymer 42:6851–6857

    Article  CAS  Google Scholar 

  13. Chen J, Park H, Park K (1988) Polym Mater Sci Eng 79:236–237

    Google Scholar 

  14. Chen J, Blevins WE, Park H, Park K (2000) J Control Release 64:39–51

    Article  CAS  Google Scholar 

  15. Decho AW (1999) Carbohydr Res 315:330–333

    Article  CAS  Google Scholar 

  16. Dai YN, Li P, Zhang JP, Wang AQ, Wei Q (2008) J Biomed Mater Res A 86B:493–500

    Article  CAS  Google Scholar 

  17. Paul DV, Marijke M, Faasa Berit S (2006) Biomaterial 27:5603–5617

    Article  Google Scholar 

  18. Orive G, Carcaboso AM, Hernández RM, Gascón AR, Pedraz JL (2005) Biomacromolecules 6:927–931

    Article  CAS  Google Scholar 

  19. Deng KL, Zhong HB, Zheng XY, Song XH, Tian H, Zhang PF, Ren XB, Wang HJ (2010) Polym Adv Technol 21:584–590

    CAS  Google Scholar 

  20. Deng KL, Zhong HB, Tian T, Gou YB, Li Q, Dong LR (2010) Express Polym Lett 4:773–780

    Article  CAS  Google Scholar 

  21. Deng KL, Gou YB, Zuo J, Dong LR, Li Q, Gao T (2011) Adv Mater Res 148:1449–1452

    Google Scholar 

  22. Zhang JX, Qiu LY, Zhu KJ, Jin Y (2004) Macromol Rapid Commun 25:1563–1567

    Article  CAS  Google Scholar 

  23. El-Sherbiny IM, Lins RJ, Abdel-Bary EM (2005) Eur Polym J 41:2584

    Article  CAS  Google Scholar 

  24. Liu XH, Wang XG, Liu DS (2002) Acta Polym Sin 3:358–362

    Google Scholar 

  25. Cheng SX, Zhang JT, Zhuo RX (2003) J Biomed Mater Res 67:96–103

    Article  Google Scholar 

  26. Mahdavinia GR, Mousavi SB, Karimi F, Marandi GB, Garabaghi H, Shahabvand S (2009) Express Polym Lett 3:279–285

    Article  CAS  Google Scholar 

  27. Jun S, Natalia M, Joao F (2006) Macromol Biosci 6:358–363

    Article  Google Scholar 

  28. Chandy MC, Pillai VR (1995) Polym Int 37:39–45

    Article  CAS  Google Scholar 

  29. Sonia P, Ihtesham R, Jones JR, Darr JA (2006) Adv Mater 18:501–504

    Article  Google Scholar 

  30. Guo BL, Gao QY (2007) Carbohydr Res 342:2416–2422

    Article  CAS  Google Scholar 

  31. Muniz EC, Geuskens G (2001) Macromolecules 34:4480–4484

    Article  CAS  Google Scholar 

  32. Lowman AM, Peppas NA (1997) Macromolecules 30:4959–4965

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Hebei Natural Science Foundation of China (B2011201156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuilin Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Dong, L., Ji, X. et al. Drug release behaviors of a pH/thermo-responsive porous hydrogel from poly(N-acryloylglycinate) and sodium alginate. J Sol-Gel Sci Technol 68, 356–362 (2013). https://doi.org/10.1007/s10971-013-3178-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3178-3

Keywords

Navigation