Skip to main content
Log in

Sol–gel synthesis of porous inorganic materials using “core–shell” latex particles as templates

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Here we report on the sol–gel synthesis of porous inorganic materials based on manganese, molybdenum, and tungsten compounds using the “core–shell” siloxane-acrylate latex as a template. The chemical composition and structural characteristics of the materials obtained have been investigated. It was shown that temperature conditions and gaseous media composition during the template destruction controlled the composition and structure of porous materials. To obtain porous inorganic materials for catalytic applications, the “core–shell” latex template was preliminarily functionalized by gold and palladium nanoparticles obtained by thermal reduction of noble metal ions-precursors in a polycarboxylic “shell”. Upon the template removal, noble metals nanoparticles of a size of dozens of nanometers were homogeneously distributed in the material porous structure. The evaluation of the catalytic activity of macroporous manganese, tungsten, and molybdenum oxides under the conditions of liquid phase catalytic oxidation of organic dyes has been performed. The prospects of employing macroporous oxide systems with immobilized nanoparticles of noble metals in the processes of hydrothermal oxidation of radionuclide organic complexes in radioactive waste decontamination have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang W, Pang Y, Hodgson SNB (2009) XRD studies of thermally stable mesoporous tungsten oxide synthesized by a template sol–gel process from tungstic acid precursor. Micro Meso Mater 121:121–128

    Article  Google Scholar 

  2. Sadakane M, Sasaki K, Kunioku H, Ohtani B, Abe R, Ueda W (2010) J Mater Chem 20:1811–1818

    Article  Google Scholar 

  3. Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. JACS 120(24):6024–6036

    Article  Google Scholar 

  4. Chain F, Tan R, Cao F, Zhai F, Wang X, Shao C, Liu Y (2007) Dendric and tubular tungsten oxide by surface sol–gel mineralization of cellulosic substance. Mater Lett 61:3939–3941

    Article  Google Scholar 

  5. Partap S, Hebb AK, Rehman IU, Darr JA (2007) Formation of porous natural-synthetic polymer composites using emulsion templating and supercritical fluid assisted impregnation. Polym Bull 58(5/6):849–860

    Article  Google Scholar 

  6. Liew M, Hoa K, Lu M, Zhang Y (2006) Preparation of porous materials with ordered hole structure. Adv Colloid Interface Sci 121:9–23

    Article  Google Scholar 

  7. Steinhart M (2008) Supramolecular organization of polymeric materials in nanoporous hard templates. Adv Polym Sci 220:123–187

    Google Scholar 

  8. Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schuth F, Stucky GD (1994) Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater 6:1176–1191

    Article  Google Scholar 

  9. Colombo P, Vakifahmetoglu C, Costacurta S (2010) Fabrication of ceramic components with hierarchical porosity. J Mater Sci 45:5425–5455

    Article  Google Scholar 

  10. Holland BT, Blanford CF, Do T, Stein A (1999) Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybride composites. Chem Mater 11:795–805

    Article  Google Scholar 

  11. Carbajo MC, Gomez A, Torralvo MJ, Encisco E (2002) Macroporous silica and titania obtained using poly[styrene-co-(2-hydroxyethyl methacrylate) as template. J Mater Chem 12:2740–2746

    Article  Google Scholar 

  12. Verissima C, Alves OL (2006) Microstructural modifications in macroporous oxides prepared via latex templating: synthesis and thermal stability of porous microstructure. J Ceram Soc 89(7):2226–2231

    Google Scholar 

  13. Ghorai TK, Pramanik S, Pramanik P (2009) Synthesis and photocatalytic oxidation of different organic dyes by using Mn2O3/TiO2 solid solution and visible light. Appl Surf Sci 255(22):9026–9031

    Article  Google Scholar 

  14. Santos VP, Carabineiro SAC, Tavares PB, Pereira MFR, Órfão JJM, Figueiredo JL (2010) Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts. Appl Catal B Environ 99:198–205

    Article  Google Scholar 

  15. Zhang X, Shi H, Xu B (2007) Comparative study of Au/ZrO2 catalysts in CO oxidation and 1,3-butadiene hydrogenation. Catal Today 122:330–337

    Article  Google Scholar 

  16. Zaki MI, Hasan MA, Pasupulety L (2000) Influence of CuOx additives on CO oxidation activity and related surface and bulk behaviours of Mn2O3, Cr2O3 and WO3 catalysts. Appl Catal A Gen 198(1–2):247–259

    Article  Google Scholar 

  17. Mizushima T, Moriya Y, Huu N, Phuc H, Ohkita H, Kakuta N (2011) Soft chemical transformation of α-MoO3 to β-MoO3 as a catalyst for vapor-phase oxidation of methanol. Catal Commun 13(1):10–13

    Article  Google Scholar 

  18. Wang LC, Huang XS, Liu Q, Liu YM, He YC, He Y, Fan KN, Zhuang SH (2008) Gold nanoparticles deposited on manganese(III) oxide as novel efficient catalyst for low temperature CO oxidation. J Catal 259(1):66–74

    Article  Google Scholar 

  19. Massah AR, Kalbasi RJ, Azadi M (2012) Highly selective oxidation of alcohols using MnO2/TiO2–ZrO2 as a novel heterogeneous catalyst. C R Chim 15:428–436

    Article  Google Scholar 

  20. Navio JA, Colón G (1994) Heterogeneous photocatalytic oxidation of liquid isopropanol by TiO2, ZrO2 and ZrTiO4 powders. Stud Surf Sci Catal 82:721–728

    Article  Google Scholar 

  21. Yang XL, Dai WL, Guo C, Chen H, Cao Y, Li H, He H, Fan K (2005) Synthesis of novel core–shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. J Catal 234(2):438–450

    Article  Google Scholar 

  22. Trach Y, Schulze B, Makota O, Bulgakova L (2006) The liquid-phase oxidation of olefins by molecular oxygen in the presence of metal borides and MoO3. J Mol Catal A Chem 258(1–2):292–294

    Article  Google Scholar 

  23. Avramenko VA, Bratskaya SYu, Voit AV, Dobrzhanskiy VG, Egorin AM, Zadorozhniy PA, Mayorov VYu, Sergienko VI (2010) Implementation of the continuous-flow hydrothermal technology of the treatment of concentrated liquid radioactive wastesat nuclear power plants. Theor Found Chem Eng 44(4):592–599

    Article  Google Scholar 

  24. Avramenko VA, Bratskaya SY, Karpov PA, Mayorov VYu, Mironenko AY, Palamarchuk MS, Sergienko VI (2010) Macroporous catalysts for liquid-phase oxidation on the basis of manganese oxides containing gold nanoparticles. Dokl Phys Chem 435:193–197

    Article  Google Scholar 

  25. Wang HH, Li XR, Fei GO, Mou J (2010) Synthesis, morphology and rheology of core–shell silicone acrylic emulsion stabilized with polymerisable surfactant. Express Polym Lett 4(11):670–680

    Article  Google Scholar 

  26. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics. J Am Ceram Soc 89(6):1771–1789

    Article  Google Scholar 

  27. Kovalenko AS, Ilin VG, Filippov OP (1997) Mesoporous molecular sieves and nanoperiodic materials. Theor Exp Chem 33(5):322–337 [in Russian]

    Article  Google Scholar 

  28. Avramenko VA, Bratskaya SYu, Egorin AM, Markovtseva TG, Ryabushkin AN, Harjula R (2008) Nanosized latexes containing polyacrylic acid and their role in migration and fixation of radionuclides at facilities of nuclear power plants. Probl Rad Saf 4:23–29 [in Russian]

    Google Scholar 

  29. Taniguchi T, Inada T, Kashiwakura T, Murakami F, Kohri M, Nakahira T (2011) Preparation of polymer core–shell particles supporting gold nanoparticles. Colloid Surf A Phys Eng Asp 377:63–69

    Article  Google Scholar 

  30. Isaeva EI, Boitsova TB, Gorbunova VV (2006) Photochemical synthesis of gold nanoparticles in latexes. Rus J Appl Chem 79(4):674–676

    Article  Google Scholar 

  31. Koetz J, Kosmella S (2007) Polyelectrolytes and nanoparticles. Springer, New York

    Google Scholar 

  32. Yakimovich NO, Sapogova NV, Smirnova LA, Aleksandrov AP, Gracheva TA, Kirsanov AV, Bityurin NM (2008) Gold-containing nanocomposition materials on the basis of homo-and copolymers of methylmethacrylate. Rus J Phys Chem 2(1):128–134

    Google Scholar 

  33. Hench LL, West K (1990) The sol–gel process. Chem Rev 90(1):33–72

    Article  Google Scholar 

  34. Maksimov AI, Moshnikov VA, Tairov YUM, Shilova OA (2007) Fundamentals of sol–gel synthesis. Elmor JSC Technomedia, Sant-Petersburg [in Russian]

    Google Scholar 

  35. Petrov VV, Plugotarenko NK, Korolev AN, Nazarova TN (2011) Technology of formation of nanocomposite materials by sol–gel method. TGI YaFU, Taganrog [in Russian] (translation to English is South Federal University, Institute of Technology)

    Google Scholar 

  36. Zelikman AN, Nikitin LS (1978) Tungsten. Metallurgy, Moscow [in Russian]

  37. Zelikman AN (1970) Molybdenum. Metallurgy, Moscow [in Russian]

  38. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  39. Conte V, Difuria F, Moro S (1996) The versatile chemistry of peroxo complexes of vanadium, molybdenum and as oxidants of organic compounds. J Phys Org Chem 9:329–336

    Article  Google Scholar 

  40. Brauer G (1985) Handbook on inorganic synthesis, 5th edn. Mir, Moscow

    Google Scholar 

  41. Castro CS, Guerreiro MC, Oliveira LCA, Gonçalves M, Anastácio AS, Nazzarro M (2009) Iron oxide dispersed over activated carbon: support influence on the oxidation of the model molecule methylene blue. Appl Catal A Gen 367:53–58

    Article  Google Scholar 

  42. Worl LA, Buelow SJ, Padilla D (2000) Hydrothermal processing. Chall Plutonium Sci Los Alamos Sci 26:450

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Papynov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papynov, E.K., Mayorov, V.Y., Palamarchuk, M.S. et al. Sol–gel synthesis of porous inorganic materials using “core–shell” latex particles as templates. J Sol-Gel Sci Technol 68, 374–386 (2013). https://doi.org/10.1007/s10971-013-3039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3039-0

Keywords

Navigation