Skip to main content
Log in

Synthesis and characterization of MFe2O4 sulfur nanoadsorbents

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanoparticles of ferrites (Fe3O4, NiFe2O4, CuFe2O4, and MnFe2O4) were prepared by a reverse (water/oil) microemulsion method. The microemulsion system consisted of cetyltrimethylammonium bromide, 1-butanol, cyclohexane, and a metal salt solution. The procedure was carried out using aqueous ammonia as the coprecipitating agent. Nanosized particles were characterized by thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and pyridine adsorption. The NiFe2O4 sample exhibited narrow mesoporous pore size distribution and high surface area ≈233 m2/g. It achieved good adsorption activity towards the dibenzothiophene (DBT) compound (166.3 μmol/g of DBT adsorbent). The structural properties obtained were very interesting for potential applications in the desulfurization process in petroleum refining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kameoka S, Tanabe T, Tsai AP (2010) Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4. Appl Catal A 375:163–171

    Article  CAS  Google Scholar 

  2. Aman D, Zaki T, Mikhail S, Selim SA (2011) Synthesis of a perovskite LaNiO3 nanocatalyst at a low temperature using single reverse microemulsion. Catal Today 164:209–213

    Article  CAS  Google Scholar 

  3. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2011) Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties. Mater Lett 65:1438–1440

    Article  CAS  Google Scholar 

  4. Hu P, Zhang S, Wang H, Pan D, Tian J, Tang Z, Volinsky AA (2011) Heat treatment effects on Fe3O4 nanoparticles structure and magnetic properties prepared by carbothermal reduction. J Alloys Compd 509:2316–2319

    Article  CAS  Google Scholar 

  5. Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci 314:274–280

    Article  CAS  Google Scholar 

  6. Martínez-Mera I, Espinosa-Pesqueira ME, Pérez-Hernández R, Arenas-Alatorre J (2007) Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Mater Lett 61:4447–4451

    Article  Google Scholar 

  7. Srivastava M, Chaubey S, Ojha AK (2009) Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater Chem Phys 118:174–180

    Article  CAS  Google Scholar 

  8. Hong RY, Pan TT, Li HZ (2006) Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids. J Magn Magn Mater 303:60–68

    Article  CAS  Google Scholar 

  9. Satyanarayana L, Reddy KM, Sunkara VM (2003) Nanosized spinel NiFe2O4: a novel material for the detection of liquefied petroleum gas in air. Mater Chem Phys 82:21–26

    Article  CAS  Google Scholar 

  10. Sun Z, Liu L, Jia DZ, Pan W (2007) Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sens Actuators, B 125:144–148

    Article  Google Scholar 

  11. Long X, Liu Y, Yao G, Du J, Hua Z, Zhang X (2012) Effect of adding fiber on the microstructure and mechanical properties of NiFe2O4 composite ceramics. Ceram Int 38:6943–6949

    Article  CAS  Google Scholar 

  12. Wu R, Qu J, He H, Yu Y (2004) Removal of azo-dye Acid Red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder. Appl Catal B 48:49–56

    Article  CAS  Google Scholar 

  13. Wu R, Qu J, Chen Y (2005) Magnetic powder MnO–Fe2O3 composite — a novel material for the removal of azo-dye from water. Water Res 39:630–638

    Article  CAS  Google Scholar 

  14. Baruwati B, Guin D, Manorama SV (2007) Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for suzuki and heck reactions. Org Lett 9:5377–5380

    Article  CAS  Google Scholar 

  15. Zhang S, Zhao X, Niu H, Shi Y, Cai Y, Jiang G (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167:560–566

    Article  CAS  Google Scholar 

  16. Nguyen TD, Phan NH, Do MH, Ngo KT (2011) Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. J Hazard Mater 185:653–661

    Article  CAS  Google Scholar 

  17. Zhang L, Liu X, Guo X, Su M, Xu T, Song X (2011) Investigation on the degradation of brilliant green induced oxidation by NiFe2O4 under microwave irradiation. Chem Eng J 173:737–742

    Article  CAS  Google Scholar 

  18. Karpova T, Vassiliev V, Vladimirova E, Osotov V, Ronkin M, Nosov A (2012) Synthesis of ultradisperse NiFe2O4 spinel by thermal decomposition of citrate precursors and its magnetic properties. Ceram Int 38:373–379

    Article  CAS  Google Scholar 

  19. Zaki T, Riad M, Saad L, Mikhail S (2005) Selected oxide materials for sulfur removal Chem Eng J 113:41–46

    CAS  Google Scholar 

  20. Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82:607–631

    Article  CAS  Google Scholar 

  21. Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86:211–263

    Article  CAS  Google Scholar 

  22. Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68

    Article  CAS  Google Scholar 

  23. Ghesti GF, de Macedo JL, Parente VCI, Dias JA, Dias SCL (2007) Investigation of pyridine sorption in USY and Ce/USY zeolites by liquid phase microcalorimetry and thermogravimetry studies. Microporous Mesoporous Mater 100:27–34

    Article  CAS  Google Scholar 

  24. Ma X, Velu S, Kim JH, Song C (2005) Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Appl Catal B 56:137–147

    Article  CAS  Google Scholar 

  25. Bu J, Loh G, Gwie CG, Dewiyanti S, Tasrif M, Borgna A (2011) Desulfurization of diesel fuels by selective adsorption on activated carbons: Competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons. Chem Eng J 166:207–217

    Article  CAS  Google Scholar 

  26. Kog N, Okada S, Nakamura T, Tanaka H (1995) A kinetic study of the thermal decomposition of iron(III) hydroxide-oxides Part 2. Preparation and thermal decomposition of γ-FeO(OH). Thermochim Acta 267:195–208

    Article  Google Scholar 

  27. Tao S, Gao F, Liu X, Sørensen OT (2000) Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mater Sci Eng B 77:172–176

    Article  Google Scholar 

  28. Du J, Liu Y, Yao G, Long X, Zu G, Ma J (2012) Influence of MnO2 on the sintering behavior and magnetic properties of NiFe2O4 ferrite ceramics. J Alloys Compd 510:87–91

    Article  CAS  Google Scholar 

  29. Roy S, Ghose J (2006) Massbauer study of nanocrystalline cubic CuFe2O4 synthesized by precipitation in polymer matrix. J Magn Magn Mater 307:32–37

    Article  CAS  Google Scholar 

  30. Nasrallah N, Kebir M, Koudri Z, Trari M (2011) Photocatalytic reduction of Cr(VI) on the novel hetero-system CuFe2O4/CdS. J Hazard Mater 185:1398–1404

    Article  CAS  Google Scholar 

  31. Coates J (2000) Interpretation of infrared spectra, A practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry. John Wiley & Sons Ltd, Chichester, UK

    Google Scholar 

  32. Zhang ZJ, Chen XY, Wang BN, Shi CW (2008) Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties. J Cryst Growth 310:5453–5457

    Article  CAS  Google Scholar 

  33. Wei Z, Qiao H, Yang H, Zhang C, Yan X (2009) Characterization of NiO nanoparticles by anodic arc plasma method. J Alloys Compd 479:855–858

    Article  CAS  Google Scholar 

  34. Gregg SJ, Sing KSW (1982) Adsorption surface area and porosity, 2nd edn. Academic Press, Britain

    Google Scholar 

  35. Lee MS, Lee JY, Lee D-W, Moon DJ, Lee K-Y (2012) The effect of Zn addition into NiFe2O4 catalyst for high temperature shift reaction of natural gas reformate assuming no external steam addition. Int J Hydrogen Energy 37:11218–11226

    Article  CAS  Google Scholar 

  36. Jiang J, Yang Y-M (2007) Facile synthesis of nanocrystalline spinel NiFe2O4 via a novel soft chemistry route. Mater Lett 61:4276–4279

    Article  CAS  Google Scholar 

  37. Baeza P, Aguila G, Gracia F, Araya P (2008) Desulfurization by adsorption with copper supported on zirconia. Catal Comm 9:751–755

    Article  CAS  Google Scholar 

  38. Subhan F, Liu BS (2011) Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents. Chem Eng J 178:69–77

    Article  CAS  Google Scholar 

  39. Rajput AB, Hazra S, Krishna NB, Chavali P, Datla S, Ghosh NN (2012) Preparation of NiFe2O4 nanopowder via EDTA precursor and study of its properties. Particuology 10:29–34

    Article  CAS  Google Scholar 

  40. Feng S, Yang W, Wang Z (2011) Synthesis of porous NiFe2O4 microparticles and its catalytic properties for methane combustion. Mater Sci Eng B 176:1509–1512

    Article  CAS  Google Scholar 

  41. Lim S-H, Woo E-J, Lee H, Lee C-H (2008) Synthesis of magnetite-mesoporous silica composites as adsorbents for desulfurization from natural gas. Appl Catal B 85:71–76

    Article  CAS  Google Scholar 

  42. Deraz NM, Alarifi A, Shaban SA (2010) Removal of sulfur from commercial kerosene using nanocrystalline NiFe2O4 based sorbents. J Saudi Chem Soc 14:357–362

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are indebted to the Science & Technology Development Fund (STDF Contract No. 1255), Egypt, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Zaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaki, T., Saed, D., Aman, D. et al. Synthesis and characterization of MFe2O4 sulfur nanoadsorbents. J Sol-Gel Sci Technol 65, 269–276 (2013). https://doi.org/10.1007/s10971-012-2933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2933-1

Keywords

Navigation