Skip to main content
Log in

Fast degradation of methylene blue with electrospun hierarchical α-Fe2O3 nanostructured fibers

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The α-Fe2O3 fibers have been prepared by electrospinning the corresponding sol–gel precursor, then these fibers were characterized by TGA, SEM, XRD, BET and FT-IR respectively, indicating that the hierarchical α-Fe2O3 nanostructured fibers came into being. Photocatalytic degradation of methylene blue (MB) in water was carried out under ultraviolet (UV) light, showing that the fibers had better efficiency for removing MB than other catalysts. And several process parameters have also been studied, which showed that the removal effect of MB was influenced by the process parameters, such as the initial dye concentration, catalyst amounts, inorganic anions, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baldrian P, Merhautová V, Gabriel J, Nerud F, Stopka P, Hrubý M, Beneš MJ (2006) Appl Catal B 66:258–264

    Article  CAS  Google Scholar 

  2. Van der Zee FP, Villaverde S (2005) Water Res 39:1425–1440

    Article  Google Scholar 

  3. Rocher V, Siaugue JM, Cabuil V, Bee A (2008) Water Res 42:1290–1298

    Article  CAS  Google Scholar 

  4. Vanhulle S, Trovaslet M, Enaud E, Lucas M, Taghavi S, Van der Lelie D, Van Aken B, Foret M, Onderwater RCA, Wesenberg D, Agathos SN, Schneiser YJ, Corbisier AM (2008) Environ Sci Technol 42:584–589

    Article  CAS  Google Scholar 

  5. Liu CH, Wu JS, Chiu HC, Suen SY, Chu KH (2007) Water Res 41:1491–1500

    Article  CAS  Google Scholar 

  6. Prigione V, Tigini V, Pezzella C, Anastasi A, Sannia G, Cristina Varese G (2008) Water Res 42:2911–2920

    Article  CAS  Google Scholar 

  7. Zhao D, Chen CC, Wang YF, Ma WH, Zhao JC, Rajh T, Zang L (2008) Environ Sci Technol 42:308–314

    Article  CAS  Google Scholar 

  8. Sayama K, Hayashi H, Arai T, Yanagida M, Gunji T, Sugihara H (2010) Appl Catal B 94:150–157

    Article  CAS  Google Scholar 

  9. Jarrige J, Vervisch P (2009) Appl Catal B 90:74–82

    Article  CAS  Google Scholar 

  10. Song S, Xu LJ, He ZQ, Chen JM, Xiao XZ, Yan B (2007) Environ Sci Technol 41:5846–5853

    Article  CAS  Google Scholar 

  11. Ismail Adel A (2008) Appl Catal B 85:33–39

    Article  Google Scholar 

  12. Eggleston CM, Shankle AJA, Moyer AJ, Cesar I, Grätzel M (2009) Aquat Sci 71:151–159

    Article  CAS  Google Scholar 

  13. Zeng SY, Tang KB, Li TW, Liang ZH, Wang D, Wang YK, Qi YX, Zhou WW (2008) J Phys Chem C 112:4836–4843

    Article  CAS  Google Scholar 

  14. Fang XL, Chen C, Jin MS, Kuang Q, Xie ZX, Xie SY, Huang RB, Zheng LS (2009) J Mater Chem 19:6154–6160

    Article  CAS  Google Scholar 

  15. Jaworek A, Krupa A, Lackowski M, Sobczyk AT, Czech T, Ramakrishna S, Sundarrajan S, Pliszka D (2009) J Electrost 67:435–438

    Article  CAS  Google Scholar 

  16. Lamastra FR, Bianco A, Meriggi A, Montesperelli G, Nanni F, Gusmano G (2008) Chem Eng J 145:169–175

    Article  CAS  Google Scholar 

  17. Wu H, Pan W (2006) J Am Ceram Soc 89:699–701

    Article  CAS  Google Scholar 

  18. Zhan SH, Chen DR, Jiao XL, Tao CH (2006) J Phys Chem B 110:11199–11204

    Article  CAS  Google Scholar 

  19. Formo E, Lee E, Campbell D, Xia YN (2008) Nano Lett 8:668–672

    Article  CAS  Google Scholar 

  20. El-Sharkawy EA, Soliman AY, Al-Amer KM (2007) J Colloid Interf Sci 310:498–508

    Article  CAS  Google Scholar 

  21. Chen DH, Chen DR, Jiao XL, Zhao YT (2003) J Mater Chem 13:2266–2270

    Article  CAS  Google Scholar 

  22. Li X, Yu X, He JH, Xu Z (2009) J Phys Chem C 113:2837–2845

    Article  CAS  Google Scholar 

  23. Kisch H, Sakthivel S, Janczarek M, Mitoraj D (2007) J Phys Chem C 111:11445–11449

    Article  CAS  Google Scholar 

  24. Liu HM, Imanishi A, Nakato Y (2007) J Phys Chem C 111:603–8610

    Google Scholar 

  25. Yu JC, Ho WK, Yu JG, Yip HY, Wong PK, Zhao JC (2005) Environ Sci Technol 39:1175–1179

    Article  CAS  Google Scholar 

  26. Hong XT, Wang ZP, Cai WM, Lu F, Zhang J, Yang YZ, Ma N, Liu YJ (2005) Chem Mater 17:1548–1552

    Article  CAS  Google Scholar 

  27. Hattori A, Tada H (2001) J Sol-Gel Sci Technol 22:47–52

    Article  CAS  Google Scholar 

  28. Gong CR, Chen DR, Jiao XL, Wang QL (2002) J Mater Chem 12:1844–1847

    Article  CAS  Google Scholar 

  29. Aizawa M, Nakagawa Y, Nosaka Y, Fujii N, Miyama H (1990) J. Non-Cryst Solids 124:112–115

    Article  CAS  Google Scholar 

  30. Walling C (1975) Acc Chem Res 8:125–131

    Article  CAS  Google Scholar 

  31. Mohammad T, Morrison H (2000) Photochem Photobiol 71:369–381

    Article  CAS  Google Scholar 

  32. Zhang TY, Oyama T, Aoshima A, Hidaka H, Zhao JC, Serpone N (2001) J Photochem Photobiol A 140:163–172

    Article  CAS  Google Scholar 

  33. Sharma SD, Saini KK, Kant C, Sharma CP, Jain SC (2008) Appl Catal B 84:233–240

    Article  CAS  Google Scholar 

  34. Erdemoğlu S, Aksu SK, Sayılkan F, İzgi B, Asiltürk M, Sayılkan H, Frimmel F, Güçer Ş (2008) J Hazard Mater 155:469–476

    Article  Google Scholar 

  35. Huang ML, Xu CF, Wu ZB, Huang YF, Lin JM, Wu JH (2008) Dyes Pigm 77:327–334

    Article  CAS  Google Scholar 

  36. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Chemosphere 46:1173–1181

    Article  CAS  Google Scholar 

  37. Liu CC, Hsieh YH, Lai PF, Li CH, Kao CL (2006) Dyes Pigm 68:191–195

    Article  CAS  Google Scholar 

  38. Abdullah M, Low GKC, Matthews RW (1990) J Phys Chem 94:6820–6825

    Article  CAS  Google Scholar 

  39. Chang JS, Kuo TS (2000) Bioresour Technol 75:107–111

    Article  CAS  Google Scholar 

  40. Zhu HY, Jiang R, Xiao L, Chang Y, Guan YJ, Li XD, Zeng GM (2009) J Hazard Mater 169:933–940

    Article  CAS  Google Scholar 

  41. Yu ZQ, Chuang SSC (2008) Appl Catal B 83:277–285

    Article  Google Scholar 

  42. Daneshvar N, Salari D, Khataee AR (2003) J Photochem Photobiol A 157:111–116

    Article  CAS  Google Scholar 

  43. Epling GA, Lin C (2002) Chemosphere 46:937–944

    Article  CAS  Google Scholar 

  44. Konstantinou IK, Albanis TA (2004) Appl Catal B 49:1–14

    Article  CAS  Google Scholar 

  45. Hu C, Yu JC, Hao Z, Wong PK (2003) Appl Catal B 46:35–47

    Article  CAS  Google Scholar 

  46. Sökmen M, Özkan A (2002) J Photochem Photobiol A 147:77–81

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (20907022, 21003094), Doctoral Program of Higher Education of China (200800551003, 20100032120066) and Special Projects of Environmental Protection (2009ZX07208, 200909101). Professor Christine Norman is gratefully appreciated for her help in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbing Yu or Sihui Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yu, H., Zhan, S. et al. Fast degradation of methylene blue with electrospun hierarchical α-Fe2O3 nanostructured fibers. J Sol-Gel Sci Technol 58, 716–723 (2011). https://doi.org/10.1007/s10971-011-2451-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2451-6

Keywords

Navigation