Skip to main content
Log in

Immobilization of Aspergillus niger sp. in sol gel and its potential for production of xylanases

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol gel technique, using tetrametoxysilane (TMOS) as precursor, was evaluated as a method for immobilization of a xylanase-producing Aspergillus niger sp strain. Although alcohol released by the hydrolysis–condensation reaction of silicon alkoxides during sol gel formation usually has a potential denaturing activity for the entrapped biological material, Aspergillus niger cells were resistant to this condition, maintaining part of its microbial activity and xylanase production ability after the immobilization process. Optical microscopy showed a significant mycelia growth in the inner part of the support after incubation in liquid cultures; meanwhile, in shake flasks cultures, immobilized cells maintained 56% of glucose uptake and retained 24% of xylanase activity, compared to free cells after 168 h of incubation at 37 °C. Results suggested that even though this fungus was able to overcome solvent toxicity caused by the sol gel immobilization technique, diffusional limitations were the reason for low glucose consumption and the drop in the production of the enzymatic activity observed. In our knowledge, this study is the first in which the immobilization of an A. niger strain in sol gel material is reported, and from this work further study is underway to improve the characteristics of the gel material used for immobilization, as well as to increase the xylanase and other polysaccharase production by sol gel entrapped fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:55–383

    Article  Google Scholar 

  2. Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

    Article  CAS  Google Scholar 

  3. Ali N, Ikramullah, Lutfullah G, Hameed A, Ahmed S (2008) Decolorization of Acid red 151 by Aspergillus niger SA1 under different physicochemical conditions. World J Microbiol Biotechnol 24:1099–1105

    Article  CAS  Google Scholar 

  4. Yi-Rui W, Teng-Teng H, Jing-Sheng L, Maskaoui K, Tong-Wang H, Zhong H (2009) Removal of Benzo[a]pyrene by a fungus Aspergillus sp. AP14. World J Microbiol Biotechnol 25:1395–1401

    Article  Google Scholar 

  5. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  6. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22(1):33–64

    Article  CAS  Google Scholar 

  7. Arroyo M (1998) Immobilized enzymes: theory, methods of study and applications. Ars Pharm 39:23–39

    Google Scholar 

  8. Wang L, Ridgway D, Gu T, Moo-Young M (2005) Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv 23:115–129

    Article  CAS  Google Scholar 

  9. Asgher M, Asad MJ, Bhatti HN, Legge RL (2007) Hyperactivation and thermostabilization of Phanerochaete chrysosporium lignin peroxidase by immobilization in xerogels. World J Microbiol Biotechnol 23:231–525

    Article  Google Scholar 

  10. Inama L, Dire S, Carturan G, Cavazza A (1993) Entrapment of viable microorganisms by SiO2 sol gel layers on glass surfaces: Trapping, catalytic performance and immobilization durability of Saccharomyces cerevisiae. J Biotechnol 30:197–210

    Article  CAS  Google Scholar 

  11. Shati MR, Ronen D, Mandelbaum RT (1996) Atrazine degradation by Pseudomonas strain entrapped in sol gel glass. J Sol gel Sci Technol 7:77–79

    Article  Google Scholar 

  12. Soltmann U, Böttcher H (2008) Utilization of sol–gel ceramics for the immobilization of living microorganisms. J Sol gel Sci Technol 48:66–72

    Article  CAS  Google Scholar 

  13. Fennouh S, Guyon S, Livage, Roux C (2004) Sol gel entrapment Escherichia colli. J Sol gel Sci Technol 19:647–649

    Article  Google Scholar 

  14. Peralta-Pérez MR, Saucedo-Castañeda G, Gutiérrez-Rojas M, Campero A (2001) SiO2 Xerogel: A Suitable inert support for microbial growth. J Sol gel Sci Technol 20:105–110

    Article  Google Scholar 

  15. Taylor A, Finnie K, Bartlett J, Holden P (2004) Encapsulation of viable aerobic microorganisms in silica gels. J Sol gel Sci Technol 32:223–228

    Article  CAS  Google Scholar 

  16. Djambaski P, Aleksieva P, Emanuilova E, Chernev G, Spasova D, Nacheva L, Kabaivanova L, Miranda Salvado IM, Samuneva B (2009) Sol gel nanomaterials with algal heteropolysaccharide for immobilization of microbial cells, producing α-galactosidase and nitrilase. Biotechnol Biotec Eq 23(2):1270–1274

    CAS  Google Scholar 

  17. Djambaski P, Aleksieva P, Spasova D, Chernev G, Nacheva L (2010) Immobilization in nanomatrices of Humicola lutea mycelium for alpha-galactosidase biosynthesis in laboratory air-lift bioreactor. Biotechnol Biotec Eq 24(2):1897–1903

    Article  CAS  Google Scholar 

  18. Ellerby LM, Nishida CR, Nishida F, Yamanaka SA, Dunn B, Valentine JS, Zink JI (1992) Encapsulation of proteins in transparent porous silicate glasses prepared by sol gel method. Science 255:1113–1115

    Article  CAS  Google Scholar 

  19. Veum L, Hanefeld U, Pierre A (2004) The first encapsulation of hydroxynitrile lyase from Hevea brasiliensis in a sol–gel matrix. Tetrahedron 60:10419–10425

    Article  CAS  Google Scholar 

  20. Miller GL (1959) Use of dinitrosalysiclic reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  21. Martínez TMA, Pérez AO, Ponce NT (2003) Enzymatic properties of a purified xylanase from mutant PN-120 of Cellulomonas flavigena. Enzyme and Microb Technol 32(3–4):401–406

    Article  Google Scholar 

  22. Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol gel materials. J Mater Chem 16:1013–1030

    Article  CAS  Google Scholar 

  23. Brinker CJ, Sehgalb R, Hietalab SL, Deshpandeb R, Smithb DM, Lop D, Ashley CS (1994) Sol gel strategies for controlled porosity inorganic materials. J Membr Sci 94:85–102

    Article  CAS  Google Scholar 

  24. Maddox IS, Hossain M, Brooks JD (1986) The effect of methanol on citric acid production from galactose by Aspergillus niger. Appl Microbiol Biotechnol 23:203–205

    Article  CAS  Google Scholar 

  25. Whitaker A, Long PA (1973) Fungal pelleting. Proc Biochem 8:27–31

    Google Scholar 

  26. Metz B, Kossen NWF (1977) The growth of molds in the form of pellets: literature review. Biotechnol Bioeng 19:781–799

    Article  CAS  Google Scholar 

  27. Hilge-Rotmann B, Hans-Jürgen R (1990) Comparison of fermentation properties and specific enzyme activities of free and calcium-alginate-entrapped Saccharomyces cerevisiae. Appl Microbiol Biotechnol 33:54–58

    Article  CAS  Google Scholar 

  28. Sanjay K, Asish M, Pradeep KDM, Saptadip S, Bikash RP, Keshab CM (2008) Production of xylanase by immobilized Trichoderma reesei SAF3 in Ca-alginate beads. J Ind Microbiol Biotechnol 35:245–249

    Article  Google Scholar 

  29. Dickson DA, Page CJ, Ely RL (2009) Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol–gel. Int J Hydrogen Energy 34(1):204–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this project was financed by CoSNET (1017.03-P). PBR is grateful to the State Scholarship Fund provided by CoSNET (402003196). Authors thanks Dr. Guillermo Aguilar-Osorio from Facultad de Química de la UNAM for the facilities with the optical microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. García-Rivero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peralta-Pérez, M.R., Martínez-Trujillo, M.A., Nevárez-Moorillón, G.V. et al. Immobilization of Aspergillus niger sp. in sol gel and its potential for production of xylanases. J Sol-Gel Sci Technol 57, 6–11 (2011). https://doi.org/10.1007/s10971-010-2314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2314-6

Keywords

Navigation