Skip to main content

Advertisement

Log in

Size control of nanostructured silica using chitosan template and fractal geometry: effect of chitosan/silica ratio and aging temperature

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The uses of low cost, renewable, environmentally friendly chitosan biopolymer as the structural template to control the size of silica particles in the range of nanometer scales are attractive for their practical industrial applications. In this paper, the nanostructured silica was synthesized using sodium silicate as the silica source and chitosan as the template under mild conditions. Effects of chitosan/silica ratio and aging temperature on the formation and the control of nanostructured silica was investigated by using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), N2-sorption measurement, and transmission electron microscopy (TEM). It was found that the silica products were composed of the aggregates of primary silica nanoparticles and nanostructured silica units. At low aging temperature, the size of nanostructured silica was decreased when increasing the chitosan/silica ratio from 0.1 to 0.4. In contrast, the reverse trend was observed at the chitosan/silica ratio of higher than 0.4. The increase of aging temperature led to the formation of larger primary silica nanoparticles and nanostructured silica, and also promoted the formation of silica/chitosan composites. The fractal dimension calculated using modified FHH method found the linear correlation at two different regimes which might reflect the aggregates of silica products at different length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  2. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol–gel processing. Academic Press, New York

    Google Scholar 

  3. Rolison DR (2003) Science 299:1698–1701

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Zhai SR, Ha CS (2007) Micropor Mesopor Mater 102:212–222

    Article  CAS  Google Scholar 

  5. Knecht MR, Sewell SL, Wright DW (2005) Langmuir 21:2058–2061

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y, Coradin T (2008) Green Chem 10:183–190

    Article  CAS  Google Scholar 

  7. Belton D, Paine G, Patwardhan SV, Perry CC (2004) J Mater Chem 14:2231–2241

    Article  CAS  Google Scholar 

  8. Patwardhan SV, Maheshwari R, Mukherjee N, Kiick KL, Clarson SJ (2006) Biomacromolecules 7:491–497

    Article  CAS  PubMed  Google Scholar 

  9. Knecht MR, Wright DW (2004) Chem Mater 16:4890–4895

    Article  CAS  Google Scholar 

  10. Snyder MA, Lee JA, Davis TM, Scriven LE, Tsapatsis M (2007) Langmuir 23:9924–9928

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Yang T, Gao Q, Yuan J, Cheng S (2009) J Colloid Interface Sci 338:99–104

    Article  CAS  PubMed  Google Scholar 

  12. Witoon T, Chareonpanich M, Limtrakul J (2009) J Sol–Gel Sci Technol 51:146–152

    Article  CAS  Google Scholar 

  13. Leng B, Chen X, Shao Z, Ming W (2008) Small 6:755–758

    Article  Google Scholar 

  14. Puchol V, El Haskouri J, Latorre J, Guillem C, Beltrán A, Beltrán D, Amorós P (2009) Chem Commun 19:2694–2696

    Article  Google Scholar 

  15. Pfeifer P, Liu KY, Rudzinski W, Steele WA, Zgrablich G (1997) Equilibria and dynamics of gas adsorption on heterogeneous solid surfaces. Elsevier, New York

    Google Scholar 

  16. Ismail IMK, Pfeifer P (1994) Langmuir 10:1532–1538

    Article  CAS  Google Scholar 

  17. Domard A, Domard M (2002) In: Dumitriu S (ed) Polymeric biomaterials, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  18. Prouzet E, Boissière C, Kim SS, Pinnavaia TJ (2009) Micropor Mesopor Mater 119:9–17

    Article  CAS  Google Scholar 

  19. Meng F, Schlup JR, Fan LT (1998) J Colloid Interface Sci 197:88–93

    Article  CAS  PubMed  Google Scholar 

  20. Balathanigaimani MS, Shim WG, Kim C, Lee JW, Moon H (2009) Surf Interface Anal 41:484–488

    Article  CAS  Google Scholar 

  21. Lee CK, Tsay CS (1998) J Phys Chem B 102:4123–4130

    Article  CAS  Google Scholar 

  22. Tang P, Chew NYK, Chan HK, Raper JA (2003) Langmuir 19:2632–2638

    Article  CAS  Google Scholar 

  23. Esquena J, Solans C, Llorens J (2000) J Colloid Interface Sci 225:291–298

    Article  CAS  PubMed  Google Scholar 

  24. Pfeifer P, Avnir D (1983) J Chem Phys 79:3558–3565

    Article  CAS  MathSciNet  ADS  Google Scholar 

  25. Avnir D, Farin D, Pfeifer P (1983) J Chem Phys 79:3566–3571

    Article  CAS  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0012/2548), the National Science and Technology Development Agency (NSTDA Chair Professor and NANOTEC Center of Excellence) under the Postgraduate Education, and Research Programs in Petroleum and Petrochemicals, and Advanced Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metta Chareonpanich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witoon, T., Chareonpanich, M. & Limtrakul, J. Size control of nanostructured silica using chitosan template and fractal geometry: effect of chitosan/silica ratio and aging temperature. J Sol-Gel Sci Technol 56, 270–277 (2010). https://doi.org/10.1007/s10971-010-2303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2303-9

Keywords

Navigation