Skip to main content
Log in

Probing the dynamics of domain III of human serum albumin entrapped in sol–gel derived silica using a Sudlow’s site II specific fluorescent ligand

  • Special Edition: Celebrating the 60th Anniversary of Professor David Avnir
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Previous studies from our lab reported on the use of time-resolved fluorescence anisotropy (TRFA) to probe the dynamics of domains I and II within the model protein, human serum albumin (HSA), in solution and when entrapped into sol–gel derived silica. In order to further our understanding of the dynamics within this multi-domain protein, TRFA was used to measure the dynamics of domain III of the protein. For this purpose, the fluorescence ligand dansylsarcosine (DS), which has a 400-fold higher emission intensity in the bound state relative to the free state and an emission lifetime of >22 ns when bound to Sudlow’s site II (domain III) in HSA, was selected. This probe is able to accurately report on slow rotational motions (up to 300 ns correlation time) and the bound form of the probe can be selectively measured at 475 nm, ensuring that the dynamics reflect only the properly folded form of the protein. The mobility of HSA with bound dansylsarcosine (HSA–DS) was evaluated in solution and after entrapment in sol–gel derived silica prepared from sodium silicate under varying ionic strength and pH conditions. The results here show that (1) the 43 ns global rotational correlation time of HSA in buffered solution can be accurately measured via labeling with DS with no interference from faster local or segmental motions; (2) the global motion of HSA in silica is greatly hindered immediately after encapsulation, with no correlation time faster than 300 ns discernable, indicative of strong templating of the silica around domain III of the native protein; and (3) the addition of salt and variation of pH have essentially no effect on HSA mobility, ruling out electrostatics as the primary interaction restricting HSA motion. The results from this study are compared to past studies using intrinsic tryptophan fluorescence (domain II) or fluorescein-labeled HSA (domain I), and demonstrate that motion observed using such probes likely reflects differential mobility of the three domains, consistent with domain III of HSA adsorbing to or templating with silica upon entrapment while the other domains protrude into the pore. Restricted motion of domain III of HSA was also observed in silica materials derived from diglycerylsilane or tetraethylorthosilicate, showing that templating is not dependent on the silica precursor or processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jin W, Brennan JD (2002) Anal Chim Acta 461:1

    Article  CAS  Google Scholar 

  2. Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013

    Article  CAS  Google Scholar 

  3. Gill I (2001) Chem Mater 13:3404

    Article  CAS  Google Scholar 

  4. Pierre AC (2004) Biocatal Biotransform 22:145

    Article  MATH  CAS  MathSciNet  Google Scholar 

  5. Edmiston PL, Wambolt CL, Smith MK, Saavedra SS (1994) J Coll Int Sci 163:395

    Article  CAS  Google Scholar 

  6. Zheng L, Brennan JD (1998) Analyst 123:1735

    Article  ADS  CAS  Google Scholar 

  7. Flora K, Brennan JD (2001) Chem Mater 13:4170

    Article  CAS  Google Scholar 

  8. Brennan JD, Benjamin D, Dibattista E, Gulcev MD (2003) Chem Mater 15:737

    Article  CAS  Google Scholar 

  9. Sui X, Cruz-Aguado JA, Chen Y, Zhang Z, Brook MA, Brennan JD (2005) Chem Mater 17:1174

    Article  CAS  Google Scholar 

  10. Jordan JD, Dunbar RA, Bright FV (1995) Anal Chem 67:2436

    Article  PubMed  CAS  Google Scholar 

  11. Lin TY, Wu CH, Brennan JD (2007) Biosens and Bioelec 22:1861

    Article  CAS  Google Scholar 

  12. Besanger TR, Chen Y, Deisingh AK, Hodgson R, Jin W, Stanislas M, Brook MA, Brennan JD (2003) Anal Chem 75:2382

    Article  PubMed  CAS  Google Scholar 

  13. Cruz-Aguado JA, Chen Y, Zhang Z, Elowe NH, Brook MA, Brennan JD (2004) J Am Chem Soc 126:6878

    Article  PubMed  CAS  Google Scholar 

  14. Eggers DK, Valentine JS (2001) Protein Sci 10:250

    Article  PubMed  CAS  Google Scholar 

  15. Eggers DK, Valentine JS (2001) J Mol Biol 314:911

    Article  PubMed  CAS  Google Scholar 

  16. Schiro G, Sclafani M, Natali F, Cupane A (2008) Eur Biophys J 37:543

    Article  PubMed  CAS  Google Scholar 

  17. Roche CJ, Guo F, Friedman JM (2006) J. Biol Chem 281:38757

    Article  CAS  Google Scholar 

  18. Samuni U, Roche CJ, Dantsker D, Friedman JM (2007) J Am Chem Soc 129:12756

    Article  PubMed  CAS  Google Scholar 

  19. Hungerford G, Rei A, Ferreira MIC, Tredidgo C, Suhling K (2007) Photochem Photobio Sci 6:825

    Article  CAS  Google Scholar 

  20. Sui X, Lin TY, Tleugabulova D, Chen DY, Brook MA, Brennan JD (2006) Chem Mater 18:887

    Article  CAS  Google Scholar 

  21. Pastor I, Ferrer ML, Lillo MP, Gomez A, Mateo CR (2007) J Phys Chem B 111:11603

    Article  PubMed  CAS  Google Scholar 

  22. Gottfried DS, Kagan A, Hoffman BM, Friedman JM (1999) J Phys Chem B 103:2803

    Article  CAS  Google Scholar 

  23. Ferrer ML, del Monte F, Levy D (2002) Chem Mat 14:3619

    Article  CAS  Google Scholar 

  24. Dave BC, Soyez H, Miller JM, Dunn B, Valentine JS, Zink JI (1995) Chem Mater 7:1431

    Article  CAS  Google Scholar 

  25. Massari AM, Finkelstein IJ, Fayer MD (2006) J Am Chem Soc 128:3990

    Article  PubMed  CAS  Google Scholar 

  26. Wheeler KE, Nocek JM, Hoffman BM (2006) J Am Chem Soc 128:14782

    Article  PubMed  CAS  Google Scholar 

  27. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, US

    Google Scholar 

  28. Carter DC, Ho JX (1994) Adv Prot Chem 45:153

    Article  CAS  Google Scholar 

  29. Brown JR (1977) In: Rosenoer VM, Oratz M, Rothschild MA (eds) Albumin structure function and uses. Pergamon, Oxford, p 27

    Google Scholar 

  30. Dockal M, Carter DC, Ruker F (1999) J Biol Chem 274:29303

    Article  PubMed  CAS  Google Scholar 

  31. Sudlow G, Birkett J, Wade DN (1978) Mol Pharmacol 12:1052

    Google Scholar 

  32. Mackay D, Panjehshahin MR, Bowmer CJ (1991) Biochem Pharmacol 41:2011

    Article  PubMed  CAS  Google Scholar 

  33. Brook MA, Chen Y, Guo K, Zhang Z, Brennan JD (2004) J Mater Chem 14:1469

    Article  CAS  Google Scholar 

  34. Rupcich N, Green JRA, Brennan JD (2005) Anal Chem 77:8013

    Article  PubMed  CAS  Google Scholar 

  35. Besanger TR, Bhanabhai H, Brennan JD (2005) Anal Chim Acta 537:125

    Article  CAS  Google Scholar 

  36. Zheng L, Reid WR, Brennan JD (1997) Anal Chem 69:3940

    Article  CAS  Google Scholar 

  37. Tleugabulova D, Czardybon W, Brennan JD (2004) J Phys Chem B 108:10592

    Article  Google Scholar 

  38. Frey M, Wahl P (1966) C R Acad Sci Hebd Seances Acad Sci D 262:2653

    PubMed  CAS  Google Scholar 

  39. Ferrer ML, Duchowicz R, Carrasco B, de la Torre JG, Acuña AU (2001) Biophys J 90:2422

    Article  Google Scholar 

  40. Peters T Jr (1996) All about albumin: biochemistry, genetics and medical applications. Academic Press, Inc, Orlando

    Google Scholar 

  41. Keeling-Tucker T, Brennan JD (2001) Chem Mater 13:3331

    Article  CAS  Google Scholar 

  42. Dunn B, Zink JI (1997) Chem Mater 9:2280

    Article  CAS  Google Scholar 

  43. Hoenes G et al (1986) Photochem Photobiol 43:133

    Article  PubMed  CAS  Google Scholar 

  44. Ghuman et al (2005) J Mol Biol 353:38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada, the Canadian Foundation for Innovation and the Ontario Innovation Trust for support of this work. JDB holds the Canada Research Chair in Bioanalytical Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Brennan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eleftheriou, N.M., Brennan, J.D. Probing the dynamics of domain III of human serum albumin entrapped in sol–gel derived silica using a Sudlow’s site II specific fluorescent ligand. J Sol-Gel Sci Technol 50, 184–193 (2009). https://doi.org/10.1007/s10971-009-1966-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1966-6

Keywords

Navigation