Skip to main content
Log in

Preparation of nanocrystalline titania films with different porosity by water-based chemical solution deposition

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study describes the synthesis of nanocrystalline titania layers on silicon and glass substrates by chemical solution deposition, using a water-based citratoperoxo-Ti(IV) precursor solution. The same aqueous solution–gel precursor is used for deposition of, both, thin dense layers by spin-coating and thicker porous layers by tape-casting. In the latter, the precursor solution is modified by the addition of polyvinyl alcohol (PVA), which acts as a thickener and pore-forming agent. Phase composition, film morphology, and the hydrophilic character of the films are studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–VIS transmission measurements, variable angle spectroscopic ellipsometry (VASE), and by contact angle measurements. The thin 180 nm titania film, deposited from the unmodified precursor solution, shows a density of about 96%. Upon ultraviolet illumination, it acquires a highly hydrophilic surface. One hour of illumination is sufficient to obtain a water contact angle of almost 0°. Furthermore, the hydrophilisation process shows to be reversible. Tape-casting and thermal treatment of the modified precursor solution gives rise to the formation of a 500 nm thick, porous, pure anatase film. The nanocrystalline thick film is composed of 20–40 nm particles, and contains clearly defined pores of 20 nm, homogeneously distributed along the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carp O, Huisman CL, Reller A (2004) Progr Solid State Chem 32:33

    Article  CAS  Google Scholar 

  2. Gratzel M (2001) J Sol–Gel Sci Technol 22(1–2):7

    Article  CAS  Google Scholar 

  3. Gratzel M (2004) J Photochem Photobiol a-Chem 164(1–3):3

    Article  CAS  Google Scholar 

  4. Fujishima A, Zhang XT (2006) Comptes Rendus Chimie 9(5–6):750

    Article  CAS  Google Scholar 

  5. Kemmitt T, Al-Salim NI, Waterland M, Kennedy VJ, Markwitz A (2004) Curr Appl Phys 4(2–4):189

    Article  Google Scholar 

  6. Zhao L, Yu Y, Song L, Hu X, Larbot A (2005) Appl Surf Sci 239(3–4):285

    Article  CAS  Google Scholar 

  7. Mellott NP, Durucan C, Pantano CG, Guglielmi G (2006) Thin Solid Films 502(1–2):112

    Article  CAS  Google Scholar 

  8. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Thin Solid Films 351(1–2):260

    Article  CAS  Google Scholar 

  9. Yamagishi M, Kuriki S, Song PK, Shigesato Y (2003) Thin Solid Films 442:227

    Article  CAS  Google Scholar 

  10. Zhao GL, Tian Q, Liu Q, Han G (2005) Surf Coatings Technol 198(1–3):55

    Article  CAS  Google Scholar 

  11. Kitazawa N, Sakaguchi K, Aono M, Watanabe Y (2003) J Mater Sci 38(14):3069

    Article  CAS  Google Scholar 

  12. Hirashima H, Imai H, Miah MY, Bountseva IM, Beckman IN, Balek V (2004) J Non-Crystalline Solids 350:266

    Article  CAS  Google Scholar 

  13. Fan Q, Mc.Quillin B, Ray AK, Turner ML, Seddon AB (2000) J Phys D-Appl Phys 33(21):2683

    Article  CAS  Google Scholar 

  14. Mardare D, Hones P (1999) Mater Sci Eng B-Solid State Mater Adv Technol 68(1):42

    Google Scholar 

  15. Mardare D, Baban C, Gavrila R, Modreanu M, Rusu GI (2002) Surf Sci 507:468

    Article  Google Scholar 

  16. Boudaden J, Ho RSC, Oelhafen P, Schüler A, Roecker C, Scartezzini JL (2004) Solar Energy Mater Solar Cells 84(1–4):225

    Article  CAS  Google Scholar 

  17. Karunagaran B, Kim K, Mangalaray D, Yi J, Veluman S (2005) Solar Energy Mater Solar Cells 88(2):199

    Article  CAS  Google Scholar 

  18. Kang M, Lee JH, Lee SH, Chung CH, Yoon KJ, Ogino K, Miyata S, Choung SJ (2003) J Mol Catal a-Chem 193(1–2):273

    Article  CAS  Google Scholar 

  19. Mills A (2002) J Photochem Photobiol a-Chem 151(1–3):171

    Article  CAS  Google Scholar 

  20. Jung CK (2003) Surf Coatings Technol 174–175:296

    Article  Google Scholar 

  21. Tracey SM (1998) J Mater Process Technol 77:86

    Article  Google Scholar 

  22. Truijen I, Van Bael MK, Van den Rul H, D’Haen J, Mullens J (2007) J Sol–Gel Sci Technol 41(1):43

    Article  CAS  Google Scholar 

  23. Cassiers K, Linssen T, Mathieu M, Bai YA, Zhu HY, Cool P, Vansant E (2004) J Phys Chem B 108(12):3713

    Article  CAS  Google Scholar 

  24. Yun HS, Miyazawa KC, Honma I, Zhou H, Kuwabara M (2003) Mater Sci Eng C-Biomimetic Supramol Syst 23(4):487

    Google Scholar 

  25. Guo B, Liu Z, Hong L, Jiang H, Lee JY (2005) Thin Solid Films 479(1–2):310

    Article  CAS  Google Scholar 

  26. Miki T, Nishizawa K, Suzuki K, Kato K (2004) J Mater Sci 39(2):699

    Article  CAS  Google Scholar 

  27. Thoms H, Epple M, Fröba M, Wong J, Reller A (1998) J Mater Chem 8(6):1447

    Article  CAS  Google Scholar 

  28. Zheng JY (2001) J Mater Chem 11(12):3367

    Article  CAS  Google Scholar 

  29. Van den Rul H, Van Bael MK, Hardy A, Van Werde K, Mullens J Aqueous solution-based synthesis of nanostructured metal oxides. In: Handbook of nanoceramics and their based nanodevices. T.Y. Tseng and H.S. Nalwa (in press)

  30. Schwartz RW, Schneller T, Waser R (2004) C R Chemie 7:433

    CAS  Google Scholar 

  31. Bretos I, Jimenez R, Calzada ML, Van Bael MK, Hardy A, Van Genechten D, Mullens J (2006) Chem Mater 18:6448

    Article  CAS  Google Scholar 

  32. Van den Rul H, Mondelaers D, Van Bael MK, Mullens J (2006) J Sol–Gel Sci Technol 39(1):41

    Article  CAS  Google Scholar 

  33. Hardy A, Vanhoyland G, Geuzens E, Van Bael MK, Mullens J, Van Poucke LC, D’Haen J (2005) J Sol–Gel Sci Technol 33:283

    Article  CAS  Google Scholar 

  34. Pagnaer J, Mondelaers D, Van Bael MK, Mullens J, Van Poucke LC, Vanhoyland G, D’Haen J (2004) J Eur Ceram Soc 24:919

    Article  CAS  Google Scholar 

  35. Nelis D, Van Werde K, Mondelaers D, Vanhoyland G, Van den Rul H, Van Bael MK, Mullens J, Van Poucke LC (2003) J Sol–Gel Sci Technol 26:1125

    Article  CAS  Google Scholar 

  36. Van bael MK, Kareiva A, Nouwen R, Schildermans I, Vanhoyland G, D’Haen J, D’Olieslaeger M, Franco D, Mullens J, Yperman J, Van Poucke LC (1999) Int J Inorg Mater 1(3–4):259

    Article  Google Scholar 

  37. Van Werde K, Vanhoyland G, Nelis D, Mondelaers D, Van Bael MK, Mullens J, Van Poucke LC (2001) J Mater Chem 11(4):1192

    Article  Google Scholar 

  38. Hardy A, Van Werde K, Vanhoyland G, Van Bael MK, Mullens J, Van Poucke LC (2003) Thermochim Acta 397(1–2):143

    Article  CAS  Google Scholar 

  39. Hardy A, Mondelaers D, Vanhoyland G, Van Bael MK, Mullens J, Van Poucke LC (2003) J Sol–Gel Sci Technol 26:1103

    Article  CAS  Google Scholar 

  40. Hardy A, Mondelaers D, Van Bael MK, Mullens J, Van Poucke LC, Vanhoyland G, D’Haen J (2004) J Eur Ceram Soc 24(6):905

    Article  CAS  Google Scholar 

  41. Van Bael MK, Nelis D, Hardy A, Mondelaers D, Van Werde K, D’Haen J, Vanhoyland G, Van den Rul H, Mullens J, Van Poucke LC, Frederix F, Wouters DJ (2002) Integr Ferroelectr 45:113

    Article  Google Scholar 

  42. Poruba A, Fejfar A, Remes Z, Springer J, Vanecek M, Kocka J, Meier J, Torres P, Shah A (2000) J Appl Phys 88(1):148

    Article  CAS  Google Scholar 

  43. Yusuf MM, Imai H, Hirashima H (2002) J Sol–Gel Sci Technol 25(1):65

    Article  CAS  Google Scholar 

  44. Fujimori Y, Miyamoto T (2002) European Patent 1.213.775 A2 (June 12, 2002)

  45. Truijen I et al., in preparation

  46. Tsukahara J, Shiratsuchi K, Kubota T, Sen S (2001) European Patent 1.107.333 A2. (June 13, 2001)

  47. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Pure Appl Chem 66(8):1739

    CAS  Google Scholar 

  48. Sing KSW (2004) Colloids Surf A Physicochem Eng Asp 241(1–3):3

    Article  CAS  Google Scholar 

  49. Denoyel R, Llewellyn P, Beurroies I, Rouquerol J, Rouquerol FO, Luciani L (2004) Part Part Syst Charact 21(2):128

    Article  Google Scholar 

  50. Rouessac V, Coustel R, Bosc F, Durand J, Ayral A (2006) Thin Solid Films 495(1–2):232

    Article  CAS  Google Scholar 

  51. Truijen I, Haeldermans I, Van Bael MK, Van den Rul H, D’Haen J, Mullens J (2007) J Eur Ceram Soc, published online, (April 2007)

Download references

Acknowledgements

M. K. Van Bael is a post-doctoral fellow of the Research Foundation Flanders, Belgium (FWO Vlaanderen). The authors would like to thank I. Haeldermans, B. Ruttens and Koen Vandewal of the Institute for Materials Research (IMO, UHasselt) for performing the XRD, TEM and SEM measurements and data fitting and S. Mullens of the Flemish Institute for Technological Research (VITO) for performing the N2 sorption measurements and SEM image analysis. The authors also wish to thank the laboratory ‘Cel Kunststoffen’ of the Katholieke Hogeschool Limburg for the use of its contact angle analyser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules Mullens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truijen, I., Van Bael, M.K., Van den Rul, H. et al. Preparation of nanocrystalline titania films with different porosity by water-based chemical solution deposition. J Sol-Gel Sci Technol 43, 291–297 (2007). https://doi.org/10.1007/s10971-007-1587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1587-x

Keywords

Navigation