Skip to main content
Log in

Stress evolution on gel-to-ceramic thin film conversion

  • Nanomaterials and Thin Films
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In situ cracking observation, uncracking critical thickness evaluation and in situ stress measurement were conducted during heating for alkoxide-derived gel coating films. Higher water-to-alkoxide ratios and lower heating rates were shown to cause cracking at lower temperatures. The in situ stress measurement suggested that higher water-to-alkoxide ratios in solutions and lower heating rates result in larger in-plane tensile stress to be generated in the heating-up stage, which was thought to cause the cracking at lower temperatures. Methyltriethoxysilane, chelating agents and polyvinylpyrrolidone were shown to be effective in increasing uncracking critical thickness and/or thick film formation. The in situ stress measurement suggested that these additives or components are effective in suppressing the stress evolution during heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sendova M Willis K (2003) Appl Phys A—Mater Sci Proc 76:957

    Article  CAS  Google Scholar 

  2. Chow LA, Dunn B, Tu KN, Chiang C (2000) J Appl Phys 87:7788

    Article  CAS  Google Scholar 

  3. Liu J, Lam YL, Chan YC, Zhou Y, Ooi BS, Yunm ZS (2000) Appl Phys A—Mater Sci Proc 70:341

    Article  CAS  Google Scholar 

  4. Atkinson A, Guppy RM (1991) J Mater Sci 26:3869

    Article  CAS  Google Scholar 

  5. Garino TJ (1990) Mat Res Soc Symp Proc 180:497

    CAS  Google Scholar 

  6. Thouless MD (1988) Acta Metall 36:3131

    Article  CAS  Google Scholar 

  7. Evans AG, Drory MD, Hu MS (1988) J Mater Res 3:1043

    CAS  Google Scholar 

  8. Kozuka H (2004) In: Sakka S (ed) Sol-Gel Scince and technology: Processing characterization and applications, vol. 1. Kluwer Boston, Chap. 12

    Google Scholar 

  9. Pulskamp JS, Wickenden A, Polcawich R, Piekarski B, Dubey M, Smith G (2003) J Vac Sci Techn B 21:2482

    Article  CAS  Google Scholar 

  10. Hartner W, Bosk P, Schindler G, Bachhofer H, Mort M, Wendt H, Mikolajick T, Dehm C, Schroeder H, Waser R (2003) Appl Phys A—Mater Sci Process 77:571

    Article  CAS  Google Scholar 

  11. Robertson MA, Rudkin RA, Parsonage D, Atkinson A (2003) J Sol-Gel Sci Techn 26:291

    Article  CAS  Google Scholar 

  12. Zhang LL, Ichiki M, Maeda R (2002) Ferroelectrics 273:2461

    Article  Google Scholar 

  13. Gupta S (2002) J Raman Spectr 33:42

    Article  CAS  Google Scholar 

  14. Brenier R, Gagnaire A (2001) Thin Solid Films 392:142

    Article  CAS  Google Scholar 

  15. Chiang CK, Wallace WE, Lynn GW, Feiler D, Xia W (2000) Appl Phys Lett 76:430

    Article  CAS  Google Scholar 

  16. Brenier R, Urlacher C, Mugnier J, Brunel M (1999) Thin Solid Films 338:136

    Article  CAS  Google Scholar 

  17. Sengupta SS, Park SM, Payne DA, Allen LH (1998) J Appl Phys 83:2291

    Article  CAS  Google Scholar 

  18. Mendiola J, Calzada ML, Ramos P, Martin MJ, Agullo-Rueda F (1998) Thin Solid Films 315:195

    Article  CAS  Google Scholar 

  19. Mehner A, Klumper-Westkamp H, Hoffmann F, Mayr P (1997) Thin Solid Films 308:368

    Article  Google Scholar 

  20. Tuchiya T, Itoh T, Sasaki G, Suga T (1996) J Ceram Soc Jpn 104:159

    CAS  Google Scholar 

  21. Chingprado E, Reynesfigueroa A, Katiyar RS, Majumder SB, Agrawal DC (1995) J Appl Phys 78:1920

    Article  CAS  Google Scholar 

  22. Parrill TM (1994)J Mater Res 9:723

    CAS  Google Scholar 

  23. Syms RRA, Holmes AS (1994) J Non-Cryst Solids 170:223

    Article  CAS  Google Scholar 

  24. Wu W, Lanagan MT, Kullberg ML, Poeppel RB, Wang B, Danyluk S (1993) Thin Solid Films 223:260

    Article  CAS  Google Scholar 

  25. Exarhos GJ, Hess NJ (1992) Thin Solid Films 220:254

    Article  CAS  Google Scholar 

  26. Cerqua KA, Hayden JE, LaCourse WC (1988) J Non-Cryst Solids 100:471

    Article  CAS  Google Scholar 

  27. Hoffman RW (1966) Phys Thin Films 3:211

    CAS  Google Scholar 

  28. Kozuka H, Isota Y, Higuchi A, Hamatani T (2001) In: Miyata N, Ota R, Miyamoto Y, Shiono T (eds) Proceedings of international symposia on materials science for the 21th century, vol. B. The Society of Materials Science, Japan, Kyoto, pp 122–125

    Google Scholar 

  29. Kozuka H (2002) Bull Ceram Soc Jpn 37:143 [In Japanese]

    CAS  Google Scholar 

  30. Kozuka H, Takenaka S, Tokita H, Hirano T, Higashi Y, Hamatani T (2003) J Sol-Gel Sci Techn 26:681

    Article  CAS  Google Scholar 

  31. Kozuka H, Komeda M (2004) J Ceram Soc Jpn 112:S223

    Google Scholar 

  32. Kozuka H (2003) J Ceram Soc Jpn 111:624

    Article  CAS  Google Scholar 

  33. Kurisu T, Kozuka H (2006) J Am Ceram Soc. in press

  34. Innocenzi P, Abdirashid MO, Guglielmi M (1994) J Sol-Gel Sci Techn 3:47

    Article  CAS  Google Scholar 

  35. Kozuka H, Miyake H, Ishikawa Y (2004) In Proceedings of XX International Congress on Glass Kyoto, Sept. 27—Oct. 1: paper O-11-013

  36. Ohya S Y, Itoda S, Ban T, Takahashi Y (2002) Jpn J Appl Phys Pt. 1 41:270

    Article  Google Scholar 

  37. Tu YL, Milne SJ (1995) J Mater Sci 30:2507

    Article  CAS  Google Scholar 

  38. Kozuka H, Ysota Y, Hosokawa M (2001) Ceram Trans 112:335

    CAS  Google Scholar 

  39. Kozuka H, Katayama K, Isota Y, Takenaka S (2001) Ceram Trans 123:105

    CAS  Google Scholar 

  40. Kozuka H, Takenaka S, Tokita H, Okubayashi M (2004) J Eur Ceram Soc 24:1585

    Article  CAS  Google Scholar 

  41. Nakai N, Kozuka H (2004) Trans Mater Res Soc Jpn 29:2269

    CAS  Google Scholar 

  42. Saegusa T Chujo Y (1990) J Macromole Sci Chem. A27:1603

    CAS  Google Scholar 

  43. Saegusa T, Chujo Y (1992) Makromol Chem Macromol Symp 64:1

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Kozuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozuka, H. Stress evolution on gel-to-ceramic thin film conversion. J Sol-Gel Sci Technol 40, 287–297 (2006). https://doi.org/10.1007/s10971-006-9213-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-9213-x

Keywords

Navigation