Skip to main content
Log in

Natural bitumen hosted uranium mineralization: stability of the radiogenic system

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Submillimetre uraninite fragments are embedded in anthraxolite, oil-derived bitumen found in Permian rocks of the Vrchlabí formation (Czech Republic). The radiogenic system appears unaltered as indicated by the elemental and lead isotopic composition of uraninite. Low compositional variances in uraninite indicate protective properties of the bitumen envelope. The highly radiogenic composition of lead in uraninite allows dating by the SEM/EDX based chemical method, which confirms the Permian age of the mineralization. The studied association is considered to be a prospective natural analogue of long-term geological disposal of actinide-bearing bituminized radioactive waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ojovan MI, Lee WE (2005) Chapter 16—immobilisation of radioactive wastes in bitumen. In: Ojovan MI, Lee WE (eds) An introduction to nuclear waste immobilisation. Elsevier, Amsterdam, pp 201–212

    Chapter  Google Scholar 

  2. Amter S (1989) Natural analogues. Eng Geol 26:431–440. https://doi.org/10.1016/0013-7952(89)90026-4

    Article  Google Scholar 

  3. Pérez del Villar L, Bruno J, Campos R, Gómez P, Garralón CJS et al (2002) The uranium ore from Mina Fe (Salamanca, Spain) as a natural analogue of processes in a spent fuel repository. Chem Geol 190:395–415. https://doi.org/10.1016/S0009-2541(02)00127-4

    Article  Google Scholar 

  4. Hellmuth KH (1989) Natural analogues of bitumen and bituminized radioactive waste (STUK-B-VALO 58). Finnish Centre for Radiation and Nuclear Safety, Helsinki. https://inis.iaea.org/collection/NCLCollectionStore/_Public/21/027/21027187.pdf

  5. René M (2017) History of uranium mining in Central Europe. In: Awwad NS (ed) Uranium-safety, resources, separation and thermodynamic calculation. IntechOpen, London

    Google Scholar 

  6. Havelcová M, Sýkorová I, René M, Mizera J, Coubal M, Machovič V, Strunga V, Goliáš V (2022) Geology and petrography of uraniferous bitumens in Permo-Carboniferous sediments (Vrchlabí, Czech Republic). Minerals 12:544. https://doi.org/10.3390/min12050544

    Article  CAS  Google Scholar 

  7. McEachern RJ, Taylor P (1998) A review of the oxidation of uranium dioxide at temperatures below 400 °C. J Nucl Mater 254:87–121. https://doi.org/10.1016/S0022-3115(97)00343-7

    Article  CAS  Google Scholar 

  8. Janeczek J, Ewing RC (1992) Structural formula of uraninite. J Nucl Mater 190:128–132. https://doi.org/10.1016/0022-3115(92)90082-V

    Article  CAS  Google Scholar 

  9. Fayek M, Burns P, Yong-Xiang G, Ewing RC (2000) Micro-structures associated with uraninite alteration. J Nucl Mater 277:204–210. https://doi.org/10.1016/S0022-3115(99)00199-3

    Article  CAS  Google Scholar 

  10. Fayek M, Kyser TK, Riciputi LR (2002) U and Pb isotope analysis of uranium minerals by ion microprobe and the geochronology of the McArthur River and Sue Zone uranium deposits, Saskatchewan, Canada. Can Min 40:1553–1569. https://doi.org/10.2113/gscanmin.40.6.1553

    Article  CAS  Google Scholar 

  11. Škácha P, Goliáš V, Sejkora J, Plášil J, Strnad L, Škoda R, Ježek J (2009) Hydrothermal uranium—base metal mineralization of the Jánská vein, Březové Hory, Příbram, Czech Republic: lead isotopes and chemical dating of uraninite. J Geosci 54:1–13. https://doi.org/10.3190/jgeosci.030

    Article  CAS  Google Scholar 

  12. Parnell J (1993) Chemical age dating of hydrocarbon migration using uraniferous bitumens, Czech-Polish border region. In: Parnell J, Kucha H, Landais P (eds) Bitumens in ore deposits. Springer, Berlin, pp 510–517

    Chapter  Google Scholar 

  13. Bowles JFW (1990) Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chem Geol 83:47–53. https://doi.org/10.1016/0009-2541(90)90139-X

    Article  CAS  Google Scholar 

  14. Hurtado JM, Chatterjee N, Ramezani J, Hodges KV, Bowring SA (2007) Electron microprobe chemical dating of uraninite as a reconnaissance tool for leucogranite geochronology. Nat Prec. https://doi.org/10.1038/npre.2007.655.1

    Article  Google Scholar 

  15. Čurda M (2014) Lead isotopes and 210Pb in recent galenas of the Lower Silesia basin. Diploma thesis, Faculty of Sciences, Charles University, Prague (in Czech). https://dspace.cuni.cz/bitstream/handle/20.500.11956/72250/120168037.pdf?sequence=1&isAllowed=y

  16. Lin J, Liu Y, Yang Y, Hu Z (2016) Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sci 1:5–2. https://doi.org/10.1016/j.sesci.2016.04.002

    Article  Google Scholar 

  17. Holá M, Novotný K, Dobeš J, Krempl I, Wertich V, Mozola J, Kubeš M, Faltusová V, Leichmann J, Kanický V (2021) Dual imaging of uranium ore by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Laser Induced Breakdown Spectroscopy. Spectrochim Acta B 186:106312. https://doi.org/10.1016/j.sab.2021.106312

    Article  CAS  Google Scholar 

  18. Oriolo S, Wemmer K, Oyhantçabal P, Fossen H, Schulz B, Siegesmund S (2018) Geochronology of shear zones—a review. Earth Sci Rev 185:665–683. https://doi.org/10.1016/j.earscirev.2018.07.007

    Article  CAS  Google Scholar 

  19. Evins LZ, Jensen KA, Ewing RC (2005) Uraninite recrystallization and Pb loss in the Oklo and Bangombe natural fission reactors, Gabon. Geochim Cosmochim Acta 69:1589–1606. https://doi.org/10.1016/j.gca.2004.07.013

    Article  CAS  Google Scholar 

  20. Machovič V, Havelcová M, Lapčák L, Mizera J, Sýkorová I (2022) Chemical character and structure of uraniferous bitumens (Vrchlabí, Czech Republic). Int J Coal Geol 264:104137. https://doi.org/10.1016/j.coal.2022.104137

    Article  CAS  Google Scholar 

  21. Havelcová M, Machovič V, Mizera J, Sýkorová I, Borecká L, Kopecký L (2014) A multi-instrumental geochemical study of anomalous uranium enrichment in coal. J Environ Radioact 137:52–63. https://doi.org/10.1016/j.jenvrad.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  22. Řanda Z, Frána J, Mizera J, Kučera J, Novák JK, Ulrych J, Belov AG, Maslov OD (2007) Instrumental neutron and photon activation analyses in geochemical study of phonolitic and trachytic rocks. Geostand Geoanal Res 31:275–283. https://doi.org/10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  23. Mizera J, Řanda Z (2010) Instrumental neutron and photon activation analyses of selected geochemical reference materials. J Radioanal Nucl Chem 284:157–163. https://doi.org/10.1007/s10967-010-0447-2

    Article  CAS  Google Scholar 

  24. Řanda Z, Ulrych J, Turek K, Mihaljevič M, Adamovič J, Mizera J (2010) Radiobarites from the Cenozoic volcanic region of the Bohemian Massif: radiochemical study, history, and lead isotopic composition. J Radioanal Nucl Chem 283:89–94. https://doi.org/10.1007/s10967-009-0095-6

    Article  CAS  Google Scholar 

  25. Stacey JC, Krammers JD (1975) Approximation of terrestrial lead isotope evolution by two stage model. Earth Planet Sci Lett 26:207–221. https://doi.org/10.1016/0012-821X(75)90088-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study has been supported by the Czech Science Foundation (GAČR) project 19-05360S –“Radiolytic alteration of organic matter in uraniferous environment”. It has been performed within the open-access infrastructure CANAM funded by the Ministry of Education, Youth, and Sports of the Czech Republic within the project LM2015056. The SEM-EDX work has been realized within the Institutional Support from the Ministry of Industry and Trade of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Strunga.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests that are relevant to the content of this article. The funding of this work is honestly disclosed in the acknowledgements section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strunga, V., Sihelská, K., Lorinčík, J. et al. Natural bitumen hosted uranium mineralization: stability of the radiogenic system. J Radioanal Nucl Chem 332, 1597–1606 (2023). https://doi.org/10.1007/s10967-022-08692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08692-5

Keywords

Navigation