Skip to main content
Log in

Radioactivity of fertilizers used in Serbia and dose assessments for workers in the industry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Fertilizers contain a certain level of radioactivity and thus can affect the exposure of workers to radiation during production. The activity concentrations of 238U, 226Ra, 232Th, and 40K were determined using the gamma spectrometry method for 36 samples of chemical fertilizers used in Serbia. Average values of 238U, 226Ra, 232Th, and 40K are 213 ± 37 Bq kg− 1, 51 ± 10 Bq kg− 1, 12 ± 2 Bq kg− 1, 3671 ± 436 Bq kg− 1, respectively. The values of radium equivalent index (Raeq), absorbed gamma dose rate (DR), annual effective dose (AED) and excess lifetime cancer risk (ELCR), alpha dose equivalents for radon exposures (HE), and radon mass exhalation rates (EM) were estimated. The obtained values were compared with the results of similar research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kadhim NF, Khalaf HNB, Baqir YA et al (2021) The effects of fertilizers on increasing the natural radioactivity of cabbage plants. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03804-2

    Article  Google Scholar 

  2. Tahir SNA, Alaamer AS, Omer RM (2009) Study of contents of 226Ra, 232Th and 40K in fertilizers. Radiat Prot Dosim 134:62–65. https://doi.org/10.1093/rpd/ncp059

    Article  CAS  Google Scholar 

  3. Bogdanović D (2010) Hemizacija-potrošnja mineralnih đubriva u proizvodnji hrane. Letopis naučnih radova 1:32–45 (Review paper in Serbian)

    Google Scholar 

  4. Uosif MAM, Mostafa AMA, Elsaman R et al (2014) Natural radioactivity levels and radiological hazards indices of chemical fertilizers commonly used in Upper Egypt. J Radiat Res Appl Sci 7:430–437. https://doi.org/10.1016/j.jrras.2014.07.006

    Article  Google Scholar 

  5. Hassan NM, Mansour NA, Fayez-Hassan M et al (2016) Assessment of natural radioactivity in fertilizers and phosphate ores in Egypt. J Taibah Univ Sci 10:296–306. https://doi.org/10.1016/j.jtusci.2015.08.009

    Article  Google Scholar 

  6. International Atomic Energy Agency (2003) Extent of environmental contamination by naturally occurring radioactive material (NORM) and Technological options for mitigation, technical reports Ser. No. 419, Vienna, Austria https://www.iaea.org/publications/6789/extent-of-environmental-contamination-by-naturallyoccurring-radioactive-materijal-norm-and-technological-options-for-mitigation

  7. Kuzmanović P, Todorović N, Forkapić S et al (2020) Radiological characterization of phosphogypsum produced in Serbia. Radiat Phys Chem 166:108463. https://doi.org/10.1016/j.radphyschem.2019.108463

    Article  CAS  Google Scholar 

  8. El-Bahi SM, Sroor A, Mohamed GY et al (2017) Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers. Appl Radiat Isot 123:121–127. https://doi.org/10.1016/j.apradiso.2017.02.031

    Article  CAS  Google Scholar 

  9. Okeji MC, Agwu KK (2012) Assessment of indoor radon concentration in phosphate fertilizer warehouses in Nigeria. Radiat Phys Chem 81:253–255. doi:https://doi.org/10.1016/j.radphyschem.2011.11.052

    Article  CAS  Google Scholar 

  10. Ahmed NK, El-Arabi AGM (2005) Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. J Radioanal Nucl Chem 84:51–64. doi:https://doi.org/10.1016/j.jenvrad.2005.04.007

    Article  CAS  Google Scholar 

  11. Servitzoglou NG, Stoulos S, Katsantonis D et al (2018) Natural radioactivity studies of phosphate fertilizers applied on greek farm soils used for wheat cultivation. Radiat Prot Dosim 181:190–198. https://doi.org/10.1093/rpd/ncy009

    Article  CAS  Google Scholar 

  12. World Health Organization (2009) In: Zeeb H, Shannoun F (eds) Handbook on indoor radon: a public health perspective. World Health Organization, Eds. WHO Library Cataloguing-in-Publication Data

  13. International Atomic Energy Agency (2013) Radiation protection and management of NORM residues in the phosphate industry. Safety reports series No.78, IAEA, Vienna https://www.iaea.org/publications/8947/radiation-protection-and-management-of-norm-residues-in-the-phosphate-industry

  14. Ioannides KG, Mertzimekis TJ, Papachristodoulou CA et al (1997) Measurements of natural radioactivity in phosphate fertilizers. Sci Total Environ 196:63–67. doi:https://doi.org/10.1016/s0048-9697(96)05390-9

    Article  CAS  Google Scholar 

  15. Sabiha-Javied, Mahmood A, Tufail M et al (2017) Measurement of radon concentration and assessment of associated cancer risk in some fertilizer warehouses in the Punjab province of Pakistan. J Radioanal Nucl Chem 314:1877–1883. doi:https://doi.org/10.1007/s10967-017-5616-0

    Article  CAS  Google Scholar 

  16. Official Gazette RS 36/18 (2018) Regulation on limits of radionuclide content in drinking water, foodstuffs, feeding stuffs, drugs, items of general use, building materials and other goods to be placed on the market (in Serbian)

  17. International Atomic Energy Agency (1989) Measurement of radionuclides in food and the environment, technical reports series No. 295, Vienna, Austria

  18. Moens L, Donder JD, Xi-lei L et al (1981) Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries. Nucl Instr Methods 187:451–472. https://doi.org/10.1016/0029-554X(81)90374-8

    Article  CAS  Google Scholar 

  19. Kuzmanović P, Todorović N, Mrđa D et al (2019) Radiation exposure to zircon minerals in Serbian ceramic industries. J Radioanal Nucl Chem 322:949–960. https://doi.org/10.1007/s10967-019-06743-y

    Article  CAS  Google Scholar 

  20. LARAWEB, http://www.nucleide.org/Laraweb/index.php (assessed on September 2022)

  21. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95. doi:https://doi.org/10.1097/00004032-198501000-00007

    Article  CAS  Google Scholar 

  22. NEA-OECD (Organization for Economic Co-operation and Development) (1979) Exposure to radiation from radioactivity in building materials. Report by a group of experts of the OECD nuclear energy agency

  23. UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations scientific committee on effects of atomic radiation. Exposures from natural radiation sources, Annex B. United Nations Publication, New York

    Google Scholar 

  24. Azeez HH, Ahmad ST, Mansour HH (2018) Assessment of radioactivity levels and radiological-hazard indices in plant fertilizers used in Iraqi Kurdistan Region. J Radioanal Nucl Chem 317:1273–1283. doi:https://doi.org/10.1007/s10967-018-6001-3

    Article  CAS  Google Scholar 

  25. Council Directive 2013/59/Euratom of 5 Dec (2013) (2014) Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/ Euratom and 2003/122/Euratom. L13, vol 57. https://energy.ec.europa.eu/celex-32013l0059-en-txt_en

  26. Loan TTH, Ba VN, Van Thai Bang N et al (2018) Natural radioactivity and radiological health hazard assessment of chemical fertilizers in Viet Nam. J Radioanal Nucl Chem 316:111–117. doi:https://doi.org/10.1007/s10967-018-5719-2

    Article  CAS  Google Scholar 

  27. European Commission (1990) Commission recommendation of February 1990 on the protection of the public against indoor exposure to radon (90/143/Euroatom)

  28. Mustonen R (1985) Radioactivity of fertilizers in Finland. Sci Total Environ 45:127–134. doi:https://doi.org/10.1016/0048-9697(85)90212-8

    Article  CAS  Google Scholar 

  29. Todorović N, Bikit I, Vesković M et al (2015) Radioactivity in fertilizers and radiological impact. J Radioanal Nucl Chem 303:2505–2509. DOI https://doi.org/10.1007/s10967-014-3620-1

    Article  CAS  Google Scholar 

  30. El-Taher A, Althoyaib SS (2012) Natural radioactivity levels and heavy metals in chemical and organic fertilizers used in Kingdom of Saudi Arabia. Appl Radiat Isot 70:290–295. https://doi.org/10.1016/j.apradiso.2011.08.010

    Article  CAS  Google Scholar 

  31. Hameed PS, Pillai GS, Mathiyarasu R (2014) A study on the impact of phosphate fertilizers on the radioactivity profile of cultivated soils in Srirangam (Tamil Nadu, India). J Radiat Res Appl Sc 7:463–471. doi:https://doi.org/10.1016/j.jrras.2014.08.011

    Article  Google Scholar 

  32. Billa J, Han F, Didla S et al (2015) Evaluation of radioactivity levels in fertilizers commonly used in the Southern USA. J Radioanal Nucl Chem 306:183–191. https://doi.org/10.1007/s10967-015-4071-z

    Article  CAS  Google Scholar 

  33. Mourad NM, Sharshar T, Elnimr T et al (2009) Radioactivity and fluoride contamination derived from a phosphate fertilizer plant in Egypt. Appl Radiat Isot 67:1259–1268. https://doi.org/10.1016/j.apradiso.2009.02.025

    Article  CAS  Google Scholar 

  34. Kadi MW, Al-Eryani DA (2011) Natural radioactivity and radon exhalation in phosphate fertilizers. Arab J Sci Eng 37:225–231. https://doi.org/10.1007/s13369-011-0156-3

    Article  CAS  Google Scholar 

  35. Sesay IE, Paul M, Ademola JA (2019) Exhalation of radon from naturally occurring radioactive materials (NORM) in Nigeria. Radiat Prot Dosim 187:461–465. https://doi.org/10.1093/rpd/ncz187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 451-03-9/2022-14/ 200125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovana Knežević Radić.

Ethics declarations

 Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmanović, P., Radić, J.K., Mrđa, D. et al. Radioactivity of fertilizers used in Serbia and dose assessments for workers in the industry. J Radioanal Nucl Chem 331, 5825–5834 (2022). https://doi.org/10.1007/s10967-022-08646-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08646-x

Keywords

Navigation